Stability and iron coordination in DNA adducts of Anthracycline based anti-cancer drugs

Models, Molecular 0301 basic medicine DNA Adducts 03 medical and health sciences Molecular Structure Anthracyclines Antineoplastic Agents Hydrogen Bonding DNA Molecular Dynamics Simulation Ferric Compounds 3. Good health
DOI: 10.1039/c2cp40931c Publication Date: 2012-05-08T13:31:23Z
ABSTRACT
There is evidence that the interaction of the α-ketol group of the Doxorubicin and Epirubicin anti-cancer drugs with Fe(III) generates hydroxyl radicals under aerobic conditions, causing cardiotoxicity in patients. Considering that the formation of DNA adducts is one of the main targets of Anthracycline drugs, we have in the present study characterized several [Anthracycline-DNA]Fe(III) complexes with respect to their stability and Fe(III) coordination, by means of MD simulations. Iron is found to coordinate well to the drugs containing an α-ketol group, this being the only group of the drug that binds to the metal. The complexes containing an α-ketol group, [Doxorubicin-DNA]Fe(III) and [Epirubicin-DNA]Fe(III), thus show greater stability than those not containing it, i.e., [Daunorubicin-DNA]Fe(III), [Idarubicin-DNA]Fe(III) and [5-Imino-Daunorubicin]Fe(III). Metal attachment to the α-ketol group is furthermore facilitated by the phosphate groups of DNA. The coordination to iron in the [Doxorubicin-DNA]Fe(III) system is smaller than that found for the [Epirubicin-DNA]Fe(III) system, and the corresponding number of coordinating waters in the former is larger than in the latter. This may in turn result in higher hydroxyl radical production, thus explaining the increased cardiotoxicity noted for Doxorubicin.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (38)
CITATIONS (9)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....