ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction
02 engineering and technology
0210 nano-technology
7. Clean energy
DOI:
10.1039/c3ee42799d
Publication Date:
2013-11-07T11:30:46Z
AUTHORS (6)
ABSTRACT
We have successfully prepared nanoporous Carbon-L and -S materials by using ZIF-7 as a precursor and glucose as an additional carbon source. Results indicate that Carbon-L and -S show an appropriate nitrogen content, high surface area, robust pore structure and excellent graphitization degree. The addition of an environmentally friendly carbon source – glucose – not only improves the graphitization degree of samples, but also plays a key role in removing residual Zn metal and zinc compound impurities, which makes the resulting materials metal-free in situ nitrogen-doped porous carbons. By further investigating the electrocatalytic performance of these nitrogen-doped porous carbons for oxygen reduction reaction (ORR), we find that Carbon-L, as a metal-free electrocatalyst, shows excellent electrocatalytic activity (the onset and half-wave potentials are 0.86 and 0.70 V vs. RHE, respectively) and nearly four electron selectivity (the electron transfer number is 3.68 at 0.3 V), which is close to commercial 20% Pt/C. Moreover, when methanol was added, the Pt/C catalyst would be poisoned while the Carbon-L and -S would be unaffected. By exploring the current-time chronoamperometric response in 25 000 s, we found that the duration stability of Carbon-L is much better than the commercial 20% Pt/C. Thus, both Carbon-L and -S exhibit excellent ability to avoid methanol crossover effects, and long-term operation stability superior to the Pt/C catalyst. This work provides a new strategy for in situ synthesis of N-doped porous carbons as metal-free electrocatalysts for ORR in fuel cells.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (67)
CITATIONS (733)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....