GlcNAcstatins are nanomolar inhibitors of human O-GlcNAcase inducing cellular hyper-O-GlcNAcylation

Models, Molecular 0301 basic medicine 570 GlcNAcstatin Glycosylation Acylation Blotting, Western Catalysis Acetylglucosamine 03 medical and health sciences Bacterial Proteins In vivo Humans Nanotechnology beta-D-glucosaminidase Enzyme Inhibitors GlcNAc modification Inhibition 0303 health sciences Linked-N-acetylglucosamine Dose-Response Relationship, Drug Molecular Structure Proteins Life Sciences Insulin resistance O-GlcNAcase Alzheimer's disease beta-N-Acetylhexosaminidases Kinetics Mutagenesis O-GlcNAc Structural insights Mechanism Research Article Protein Binding
DOI: 10.1042/bj20090110 Publication Date: 2009-03-17T15:32:00Z
ABSTRACT
O-GlcNAcylation is an essential, dynamic and inducible post-translational glycosylation of cytosolic proteins in metazoa and can show interplay with protein phosphorylation. Inhibition of OGA (O-GlcNAcase), the enzyme that removes O-GlcNAc from O-GlcNAcylated proteins, is a useful strategy to probe the role of this modification in a range of cellular processes. In the present study, we report the rational design and evaluation of GlcNAcstatins, a family of potent, competitive and selective inhibitors of human OGA. Kinetic experiments with recombinant human OGA reveal that the GlcNAcstatins are the most potent human OGA inhibitors reported to date, inhibiting the enzyme in the sub-nanomolar to nanomolar range. Modification of the GlcNAcstatin N-acetyl group leads to up to 160-fold selectivity against the human lysosomal hexosaminidases which employ a similar substrate-assisted catalytic mechanism. Mutagenesis studies in a bacterial OGA, guided by the structure of a GlcNAcstatin complex, provides insight into the role of conserved residues in the human OGA active site. GlcNAcstatins are cell-permeant and, at low nanomolar concentrations, effectively modulate intracellular O-GlcNAc levels through inhibition of OGA, in a range of human cell lines. Thus these compounds are potent selective tools to study the cell biology of O-GlcNAc.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (75)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....