An infrared and visible image fusion network based on multi‐scale feature cascades and non‐local attention

QA76.75-76.765 convolutional neural nets feature extraction Photography 0202 electrical engineering, electronic engineering, information engineering Computer software 02 engineering and technology image reconstruction TR1-1050 image fusion
DOI: 10.1049/ipr2.13088 Publication Date: 2024-03-28T05:55:08Z
ABSTRACT
AbstractIn recent years, research on infrared and visible image fusion has mainly focused on deep learning‐based approaches, particularly deep neural networks with auto‐encoder architectures. However, these approaches suffer from problems such as insufficient feature extraction capability and inefficient fusion strategies. Therefore, this paper introduces a novel image fusion network to address the limitations of infrared and visible image fusion networks with auto‐encoder architectures. In the designed network, the encoder employs a multi‐branch cascade structure, and these convolution branches with different kernel sizes provide the encoder with an adaptive receptive field to extract multi‐scale features. In addition, the fusion layer incorporates a non‐local attention module that is inspired by the self‐attention mechanism. With its global receptive field, this module is used to build a non‐local attention fusion network, which works together with the ‐norm spatial fusion strategy to extract, split, filter, and fuse global and local features. Comparative experiments on the TNO and MSRS datasets demonstrate that the proposed method outperforms other state‐of‐the‐art fusion approaches.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....