First principles study on magnetic properties of Zn vacancies in ZnO doped with single chalcogen X (X = S, Se, and Te)

0103 physical sciences 01 natural sciences
DOI: 10.1063/1.3562168 Publication Date: 2011-04-02T22:40:41Z
ABSTRACT
First-principles density functional calculations were performed for magnetic properties of wurtzite ZnO(1-x)Xx (X = S, Se, and Te) alloys in the presence of Zn cation vacancies and a low concentration of group-VI dopants in the framework of the local spin density approximation (LSDA) and the LSDA+U method. The positions of the Zn-3d states are misplaced in the LSDA approach and these positions are approximately corrected in the LSDA+U method. We demonstrate that the magnetic state of ZnO(1-x)Xx with a native point defect is mainly localized at the Zn cation vacancy. The substitution of oxygen atoms around the vacancy by chalcogens X does not destroy the local spin triplet state (ST=1) at the zinc vacancy but diminishes its stability. The X impurities prefer to be close to the Zn vacancy in the apex position and the destabilization of the magnetic state increases in the series from X = S to X = Te. In order to explain the calculated magnetic properties a group theory analysis has been exploited.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (34)
CITATIONS (9)