Study of internal charging of four commonly used polymers through experimental and numerical analysis

CHARGE DENSITY DÉCHARGES ÉLECTROSTATIQUES 01 natural sciences 7. Clean energy 333 DIELECTRICS CHARGE TRANSPORT 0103 physical sciences INTERNAL CHARGING GEOSTATIONNAIRE CHARGE INTERNE CONDUCTIVITY RADIATIONS ELECTROSTATIC DISCHARGE GEOSTATIONARY DENSITÉ DE CHARGES CONDUCTIVITE TRANSPORT DE CHARGES [PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph] ELECTRIC FIELD 13. Climate action POLYMÈRES DIÉLECTRIQUES POLYMERS SATELLITES CHAMP ELECTRIQUE
DOI: 10.1063/1.5055221 Publication Date: 2019-01-30T16:43:17Z
ABSTRACT
This paper focuses on the study of internal charging of four space used polymers: polyetheretherketone, fluorinated ethylene propylene, polyimide films, and epoxy based material (Epoxy FR4). Experiments were carried out for each material using the GEODUR facility (Toulouse, ONERA) that mimics the geostationary space environment behind shielding. Two different irradiation currents have been applied: 1 pA/cm2 and 10 pA/cm2. 1 pA/cm2 is used to analyze the charging behavior and the intrinsic electrical properties of each polymer. 10 pA/cm2 is used to study the influence of high electric field levels on their charging behavior. In this paper, two different numerical tools used for the study of internal charging are presented: Monte-Carlo Internal Charging Tool (MCICT) and Transport of Holes and Electrons Model under Irradiation in Space (THEMIS). MCICT has been used in the space community for several years. THEMIS has been recently developed at ONERA and is compared to MCICT. Both numerical tools showed consistent results for the 1 pA/cm2 integrated current but with deviations for the 10 pA/cm2 integrated current, supposedly due to nonlinear electric field effects on charge transport. THEMIS has a more refined physical model for the conductivity than MCICT. It studies more accurately the electron-polymer interactions and the charge transport kinetics of polymers under space radiations. Subsequently, the analysis of the underlying physical phenomena responsible for the polymers’ charging behaviors will be carried out with THEMIS. In addition, studying these phenomena will permit to assess the risks of electrical discharges that may occur on a spacecraft in orbit (e.g., Geostationary (GEO) spacecraft) or during an elliptic trajectory (e.g., sub-GEO) in an Electric Orbit Raising case [E. Y. Choueiri, A. J. Kelly, and R. G. Jahn, J. Spacecr. Rockets 30(6), 749–754 (1993)].
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (19)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....