Methyltransferases of gentamicin biosynthesis
aminoglycoside biosynthesis
0301 basic medicine
Spectrometry, Mass, Electrospray Ionization
Methyltransferases
Biological Sciences
Methylation
Micromonospora
Substrate Specificity
03 medical and health sciences
Bacterial Proteins
Multigene Family
antibiotic
Mutation
methyltransferase
Gentamicins
metabolic engineering
Gene Deletion
DOI:
10.1073/pnas.1711603115
Publication Date:
2018-01-22T20:06:49Z
AUTHORS (9)
ABSTRACT
Gentamicin C complex from
Micromonospora echinospora
remains a globally important antibiotic, and there is revived interest in the semisynthesis of analogs that might show improved therapeutic properties. The complex consists of five components differing in their methylation pattern at one or more sites in the molecule. We show here, using specific gene deletion and chemical complementation, that the gentamicin pathway up to the branch point is defined by the selectivity of the methyltransferases GenN, GenD1, and GenK. Unexpectedly, they comprise a methylation network in which early intermediates are ectopically modified. Using whole-genome sequence, we have also discovered the terminal 6′-
N
-methyltransfer required to produce gentamicin C2b from C1a or gentamicin C1 from C2, an example of an essential biosynthetic enzyme being located not in the biosynthetic gene cluster but far removed on the chromosome. These findings fully account for the methylation pattern in gentamicins and open the way to production of individual gentamicins by fermentation, as starting materials for semisynthesis.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (49)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....