Conserved leucine-rich repeat proteins in the adhesive projectile slime of velvet worms
DOI:
10.1073/pnas.2416282122
Publication Date:
2025-03-18T16:15:02Z
AUTHORS (15)
ABSTRACT
The slime of velvet worms (Onychophora) is a protein-based bioadhesive that undergoes rapid, yet reversible transition from a fluid into stiff fibers used for prey capture and defense, but the mechanism by which this phase transition functions is largely unknown. Here, integrating transcriptomic and proteomic approaches with AI-guided structure predictions, we discover a group of evolutionarily conserved leucine-rich repeat (LRR) proteins in velvet worm slime that readily adopt a receptor-like, protein-binding “horseshoe” structure. Our structural predictions suggest dimerization of LRR proteins and support their interactions with conserved β-sheet-rich domains of high-molecular-weight proteins, the primary building blocks of velvet worm slime fibers. This suggests that LRR proteins might be involved in reversible, receptor-based supramolecular interactions in these biofibers, providing potential avenues for fabricating fully recyclable (bio)polymeric materials.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (62)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....