Spatial games and the maintenance of cooperation.
0303 health sciences
03 medical and health sciences
Game Theory
Spatial Behavior
Cooperative Behavior
Models, Biological
DOI:
10.1073/pnas.91.11.4877
Publication Date:
2006-05-31T12:47:09Z
AUTHORS (3)
ABSTRACT
The Prisoner's Dilemma (PD) is a widely employed metaphor for problems associated with the evolution of cooperative behavior. We have recently proposed an alternative approach to the PD, by exploring "spatial games" in which players--who are either pure cooperators, C, or pure defectors, D--interact with neighbors in some spatial array; in each generation, players add up the scores from all encounters, and in the next generation a given cell is retained by its previous owner or taken over by a neighbor, depending on who has the largest score. Over a wide range of the relevant parameters, we find that C and D persist together indefinitely (without any of the complex strategies that remember past encounters, and anticipate future ones, which characterize essentially all previous work on the iterated PD). Our earlier work, however, dealt with symmetric spatial lattices in two dimensions, deterministic winning and discrete time. We show here that the essential results remain valid in more realistic situations where the spatial distributions of cells are random in two or three dimensions, and where winning is partly probabilistic (rather than being determined by the largest local total). The essential results also remain valid (pace Huberman and Glance [Huberman, B. A. & Glance, N. S. (1993) Proc. Natl. Acad. Sci. USA 90, 7716-7718]) when interactions occur in continuous rather than discrete time.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (326)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....