Coordinated transcriptional control of adipocyte triglyceride lipase (Atgl) by transcription factors Sp1 and peroxisome proliferator–activated receptor γ (PPARγ) during adipocyte differentiation

Adipose triglyceride lipase Triglyceride lipase
DOI: 10.1074/jbc.m117.783043 Publication Date: 2017-07-19T00:10:12Z
ABSTRACT
The breakdown of stored fat deposits into its components is a highly regulated process that maintains plasma levels free fatty acids to supply energy cells. Insulin-mediated transcription Atgl, the enzyme mediates rate-limiting step in lipolysis, key point this regulation. Under conditions such as obesity or insulin resistance, Atgl often misregulated, which can contribute overall disease progression. mechanisms by induced during adipogenesis are not fully understood. We utilized computational approaches identify putative transcriptional regulatory elements and then tested effect these factors bind them cultured preadipocytes mature adipocytes. Here we report down-regulated basal factor Sp1 magnitude down-regulation depends on interactions between peroxisome proliferator–activated receptor γ (PPARγ). In adipocytes, when PPARγ abundant, abrogated repression at promoter up-regulated mRNA expression. Targeting PPARγ–Sp1 interaction could be potential therapeutic strategy restore sensitivity modulating TGs 4The abbreviations used are: TG, triglyceride; FA, acid; NEFA, non-esterified adipocyte triglyceride lipase; PPAR, proliferator-activated ; RXR', retinoid X '; MEF, mouse embryonic fibroblast; RIPA, radioimmune precipitation assay; RT-qPCR, quantitative RT-PCR. glycerol FAs, called catabolic serves maintain FFA homeostasis (1.Lafontan M. Langin D. Lipolysis lipid mobilization human adipose tissue.Prog. Lipid Res. 2009; 48: 275-297Crossref PubMed Scopus (573) Google Scholar, 2.Wang S. Soni K.G. Semache Casavant Fortier Pan L. Mitchell G.A. integrated physiology metabolism.Mol. Genet. Metab. 2008; 95: 117-126Crossref (130) Scholar). normal physiological conditions, NEFAs controlled via clearance circulating FAs storage tissue. After meals, pool increased much 50% lipoprotein lipase–mediated cleavage newly TGs, whereas basal-level lipolysis tissue impaired release 3.Karpe F. Dickmann J.R. Frayn K.N. Fatty acids, obesity, resistance: time for reevaluation.Diabetes. 2011; 60: 2441-2449Crossref (639) Obese individuals display several altered characteristics process, including decreased ability mobilize lipids, loss insulin-mediated inhibition NEFA release, general increase levels. There remains substantial debate regarding meaning correlation hypertrophy adipocytes high Scholar); however, lipids exceed requirements body, higher do accumulation liver skeletal muscle, further aggravating resistance perpetuating cycle (4.Stumvoll Goldstein B.J. van Haeften T.W. Type 2 diabetes: pathogenesis treatment.Lancet. 371: 2153-2156Abstract Full Text PDF (97) 5.Wymann M.P. Schneiter R. signalling disease.Nat. Rev. Mol. Cell Biol. 9: 162-176Crossref (998) As FFAs critical promoting it crucial understand control fat. Insulin classically described an inhibitor (6.Kershaw E.E. Hamm J.K. Verhagen L.A. Peroni O. Katic Flier J.S. Adipose lipase: function, regulation insulin, comparison with adiponutrin.Diabetes. 2006; 55: 148-157Crossref (309) Scholar7.Fain J.N. Kovacev V.P. Scow R.O. Antilipolytic isolated cells rat.Endocrinology. 1966; 78: 773-778Crossref (57) 8.Burns Langley P. Observations cells.J. Lab. Clin. Med. 1968; 72: 813-823PubMed Scholar9.Burns Terry B.E. P.E. Robison adipocytes: role cyclic adenosine monophosphate.Diabetes. 1979; 28: 957-961Crossref initial TG mediated ATGL, yields metabolites FA diacylglycerol. predominant mechanism regulates 10.Kralisch Klein J. Lossner U. Bluher Paschke Stumvoll Fasshauer Isoproterenol, TNFα, downregulate lipase 3T3-L1 adipocytes.Mol. Cell. Endocrinol. 2005; 240: 43-49Crossref (118) activates mTORC1 pathway simultaneously stimulates Egr1 mTORC1-dependent manner. suppresses mTORC1-mediated decreases expression both derived from animals fed high-fat diet (11.Chakrabarti Kim J.Y. Singh Shin Y.K. Kumbrink Wu Y. Lee M.J. Kirsch K.H. Fried S.K. Kandror K.V. inhibits evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway.Mol. 2013; 33: 3659-3666Crossref (111) also controls nucleo-cytoplasmic shuttling FoxO1, primarily Akt-mediated phosphorylation nuclear exclusion reducing FoxO1-mediated (12.Chakrabarti FoxO1 insulin-dependent (ATGL) adipocytes.J. Chem. 284: 13296-13300Abstract (163) addition, master regulator has consensus binding sites within 3 kb upstream start site (13.Nielsen Pedersen T.A. Hagenbeek Moulos Siersbaek Megens E. Denissov Børgesen Francoijs K.J. Mandrup Stunnenberg H.G. Genome-wide profiling PPARγ: RXR RNA polymerase II occupancy reveals temporal activation distinct metabolic pathways changes dimer composition adipogenesis.Genes Dev. 22: 2953-2967Crossref (444) Scholar) respond treatment positively regulate (14.Kim Tillison K. J.H. Rearick D.A. Smas C.M. ATGL/PNPLA2 downregulated TNF-α target transactivation PPARγ.Am. Physiol. 291: E115-E127Crossref (161) exhibits over other various metabolically important genes well, (15.O'Brien R.M. Granner D.K. Regulation gene insulin.Biochem. 1991; 278: 609-619Crossref (252) 16.O'Brien insulin.Physiol. 1996; 76: 1109-1161Crossref (440) Scholar17.Mounier C. Posner B.I. Transcriptional insulin: gene.Can. Pharmacol. 84: 713-724Crossref significant cohort family (18.Solomon S.S. Majumdar G. Martinez-Hernandez A. Raghow A regulating response hormones.Life Sci. 83: 305-312Crossref (99) binds GC-rich motifs promoters subsequently drives (19.Samson S.L. Wong N.C. Role expression.J. 2002; 29: 265-279Crossref (137) been demonstrated dynamically modify recognition (17.Mounier 18.Solomon plays diverse roles wide array cellular processes, cell growth (20.Santiago F.S. Ishii H. Shafi Khurana Kanellakis Bhindi Ramirez Bobik Martin J.F. Chesterman C.N. Zachary I.C. Khachigian L.M. Yin Yang-1 vascular smooth muscle intimal thickening repressing p21WAF1/Cip1 p21WAF1/Cip1-Cdk4-cyclin D1 assembly.Circ. 2007; 101: 146-155Crossref (62) 21.Kaczynski Cook T. Urrutia Sp1- Kruppel-like factors.Genome 2003; 4: 206Crossref (761) Scholar), apoptosis (21.Kaczynski angiogenesis (22.Mazure N.M. Brahimi-Horn M.C. Pouysségur Protein kinases hypoxia-inducible factor-1, two switches angiogenesis.Curr. Pharm. Des. 531-541Crossref (77) immune (23.Jeang K.T. Chun Lin N.H. Gatignol Glabe C.G. Fan vitro vivo immunodeficiency virus type 1 Tat protein factor.J. Virol. 1993; 67: 6224-6233Crossref differentiation (24.Opitz O.G. Rustgi A.K. Interaction proteins differentiation-related gene.Cancer 2000; 2825-2830PubMed multiple functional domains protein–protein (25.Sugawara Uruno Kudo Ikeda Sato Taniyama Ito Takeuchi Transcription suppression thromboxane receptor-γ 277: 9676-9683Abstract (81) (26.Lei N. Heckert L.L. Dmrt1 Sertoli cells.Biol. Reprod. 66: 675-684Crossref (46) Ets1 (27.Rosmarin A.G. Luo Caprio D.G. Shang Simkevich C.P. cooperates ets factor, GABP, activate CD18 (β2 leukocyte integrin) promoter.J. 1998; 273: 13097-13103Abstract (89) c-myc (28.Parisi Wirapati Naef Identifying synergistic involving c-Myc sp1 tissues.Nucleic Acids 35: 1098-1107Crossref (25) c-Jun (29.McDonough P.M. Hanford D.S. Sprenkle A.B. Mellon N.R. Glembotski C.C. Collaborative N-terminal kinase, c-Jun, serum calcium-regulated myocardial 1997; 272: 24046-24053Abstract (67) Stat1 (30.Canaff Zhou X. Hendy G.N. proinflammatory cytokine, interleukin-6, up-regulates calcium-sensing Stat1/3 Sp1/3.J. 283: 13586-13600Abstract (115) specific promoters, itself transcriptionally (31.Pan Solomon Borromeo D.M. deprivation leads deficiency H-411E hepatoma streptozotocin-induced diabetic ketoacidosis 2001; 142: 1635-1642Crossref (34) This inspired us investigate involvement insulin-responsive explore differentiation. Analysis approximately DNA sequence immediately Genomatix TRANSFAC matrices revealed Sp1-binding minimal (−50 −36 bp). across numerous species, mice humans, suggesting biological function (Fig. 1A). Therefore, test were co-transfected luciferase reporter constructs varying 5′ end deletions vector. overexpression significantly activity all constructs, indicating region (−192 +21) negatively affect 1B). examined predicted selectively mutating five nucleotides (−46 5′-CCGCC-3′ −42), shown Fig. 1C. These mutations completely prevented inhibitory 1D), confirming Atgl. When transfected variable-length promoter-luciferase incubated mithramycin A, inhibitor, 24 h, endogenous −192/+21 −373/+21 containing 1E). demonstrates exerts −50. significance was investigated depletion studies Knockdown lentiviral vector producing shRNA targeting relative 2, B). Conversely, electroporation C D) resulted lower ATGL E F) concomitant reduction medium 2G). treated (10 μm) showed presence absence 2H). Also, Collectively, negative preadipocytes. data support reduces involve Levels dramatically adipogenesis, correlating (supplemental 1). Bioinformatic analyses identified PPARγ-binding −2424, −1674, −1573 bp ChIP literature 12.Chakrabarti Scholar13.Nielsen speculated profound up-regulation due PPARγ/RXRα heterodimer (32.Schulman I.G. Shao Heyman R.A. Transactivation receptor-peroxisome (PPARγ) heterodimers: intermolecular synergy requires only hormone-dependent function.Mol. 18: 3483-3494Crossref 33.Siersbaek Nielsen metabolism: novel insights genome-wide studies.FEBS Lett. 2010; 584: 3242-3249Crossref (304) Scholar34.Willson T.M. Lambert M.H. Kliewer S.A. Peroxisome disease.Annu. Biochem. 70: 341-367Crossref (546) abovementioned sites. Of note, functionally physically interact each Thus, hypothesized may abrogate Sp1-mediated transcription. To this, plasmids wild-type site–mutated −2979/+21 alone compared construct 3A). Upon mutation full-length promoter, no longer suggest bp) contributes context −2979 +21 construct. allows Furthermore, positive PPARγ-mediated promoter. hypothesis, did induce shorter fragment (−192/+21) either 3B). Taken together, speculate induction reverses transcription, presumably direct Sp1. fact increases but shows −192 interacting directly −50 bp. reversed stoichiometric phenomenon there reversal complex, depending upon available knocked down 3C, left panel). right panel), supporting conclusion suggested overrides importance During decrease (−2428 −2408 observe combined 4A). agonist rosiglitazone. indicates drive (−2979/+21) PPARγ- greater than 4B), PPARγ. Interestingly, contains where abundant. lost lacking 4B) contrast preadipocytes, Together, suggests partially driven essential cell-type specific, assay performed using vectors MEF C2C12 result detected (Figs. 1B 4C). examine physical proteins, co-immunoprecipitations lysates; they interacts 4E). analysis genomic Atgl1 preadipoctyes 4F). hypothesis coordinately type- stage-dependent manner governed abundance occur 5). It well-documented active complexes adopt alternative functions bound additional co-activators co-repressors (35.Barolo Posakony J.W. Three habits effective signaling pathways: principles developmental signaling.Genes 16: 1167-1181Crossref (344) 36.Glass C.K. Rosenfeld M.G. coregulator exchange receptors.Genes 14: 121-141Crossref Scholar37.Grandori Cowley S.M. James L.P. Eisenman R.N. Myc/Max/Mad network behavior.Annu. 653-699Crossref (1062) For example, Klf1 alternate hematopoietic cells, stage development. erythroid primitive type, activator β-globin However, definitive repressor (38.Chen Bieker J.J. Stage-specific EKLF activator.Mol. 2004; 24: 10416-10424Crossref (63) prominent member KLF factors, similar explain switch study. Our results shortest capable inhibiting overexpressed exogenously. impact modulated type–specific responses observed. MEFs, produce negligible amounts PPARγ, observed expressed exogenously, nature milieu found overlapping proximal mutated 4B). propose that, although steady 4F), 4E), complete repressive complex activating governs fate heterodimerizes RXRα, peroxisomal proliferator elements, ligand-induced (39.Juge-Aubry Pernin Favez Burger Wahli W. Meier C.A. Desvergne B. properties subtypes natural elements: 5′-flanking region.J. 25252-25259Abstract (323) show exogenous consistent smaller Sp1–PPARγ PPARγ-me
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (37)