Determination of the Stoichiometry of the Complete Bacterial Type III Secretion Needle Complex Using a Combined Quantitative Proteomic Approach
Quantitative Analysis
Stoichiometry
DOI:
10.1074/mcp.m115.056598
Publication Date:
2016-02-22T01:08:07Z
AUTHORS (6)
ABSTRACT
Precisely knowing the stoichiometry of their components is critical for investigating structure, assembly, and function macromolecular machines. This has remained a technical challenge in particular large, hydrophobic membrane-spanning protein complexes. Here, we determined type III secretion system Salmonella enterica serovar Typhimurium using two complementary protocols gentle complex purification combined with peptide concatenated standard synthetic stable isotope-labeled peptide-based mass spectrometry. Bacterial systems are cell envelope-spanning effector protein-delivery machines essential colonization survival many Gram-negative pathogens symbionts. The membrane-embedded core unit these systems, termed needle complex, composed base that anchors machinery to inner outer membranes, hollow filament formed by rod subunits serves as conduit substrate proteins, export apparatus facilitating translocation. Structural analyses have revealed base, but remain unknown. provide evidence contains five SpaP, one SpaQ, SpaR, SpaS. We confirmed previously suggested nine InvA valid assembled complexes describe loose association other may reflect its function. Furthermore, present not more than six PrgJ form complex. Providing this structural information will facilitate efforts obtain an atomic view foster our understanding related flagellar Given virulence-associated bacterial similar overall buildup complexity, presented approach also enable elucidation. Type (T3SS), evolutionary structurally flagella (1Abby S.S. Rocha E.P.C. non-flagellar evolved from flagellum diversified into host-cell adapted systems.PLoS Genet. 2012; 8: e1002983Crossref PubMed Scopus (186) Google Scholar), used pathogenic or symbiotic bacteria inject proteins eukaryotic host cells order promote (2Galán J.E. Lara-Tejero M. Marlovits T.C. Wagner S. systems: specialized nanomachines delivery target cells.Annu. Rev. Microbiol. 2014; 68: 415-438Crossref (361) Scholar). T3SSs machine It consists membranes (3Kubori T. Matsushima Y. Nakamura D. Uralil J. Sukhan A. Galán Aizawa S.I. Supramolecular structure typhimurium system.Science. 1998; 280: 602-605Crossref (700) translocation located at center (4Wagner Königsmaier L. Lefebre Organization coordinated assembly apparatus.Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 17745-17750Crossref (114) filamentous needle, which protrude surface serve substrates Scholar) (Fig. 1). entire system, includes several cytoplasmic involved targeting preparation (5Akeda Chaperone release unfolding secretion.Nature. 2005; 437: 911-915Crossref (336) Scholar, 6Lara-Tejero Kato Liu X. A sorting platform determines systems.Science. 2011; 331: 1188-1191Crossref (192) 7Notti R.Q. Bhattacharya Lilic Stebbins C.E. common module injectisome platforms.Nat. Commun. 2015; 6: 7125Crossref (52) 8Diepold Kudryashev Delalez N.J. Berry R.M. Armitage J.P. Composition, formation, regulation cytosolic C-ring, dynamic component injectisome.PLoS Biol. 13: e1002039Crossref (72) 9Hu B. Morado D.R. Margolin W. Rohde J.R. Arizmendi O. Picking W.L. W.D. Visualization Shigella flexneri.Proc. 112: 1047-1052Crossref (161) up 20 different hundred copies each. Studies single particle cryo electron microscopy coupled molecular docking structures domains begun generate model (10Burkinshaw B.J. Strynadka N.C.J. Assembly T3SS.Biochim. Biophys. Acta. 1843: 1649-1663Crossref (104) However, densities within still unaccounted for, leaving substantial knowledge gaps yet be filled. effort been absence precise all determination accurate such large technically demanding severely needed approaches generating machine. known date resulted less amenable high-resolution x-ray crystallography NMR low-resolution microscopy. analysis isolated 12–15 membrane secretin ring 12–24 (11Hodgkinson J.L. Horsley Stabat Simon Johnson da Fonseca P.C.A. Morris E.P. Wall J.S. Lea S.M. Blocker A.J. Three-dimensional reconstruction T3SS transmembrane regions reveals 12-fold symmetry novel features throughout.Nat. Struct. Mol. 2009; 16: 477-485Crossref (97) 12Schraidt Salmonella's subnanometer resolution.Science. 1192-1195Crossref (166) 13Kowal Chami Ringler P. Müller S.A. Castaño-Díez Amstutz Cornelis G.R. Stahlberg H. Engel Structure dodecameric Yersinia enterocolitica YscC trypsin-resistant core.Structure. 2013; 21: 2151-2161Abstract Full Text PDF (31) 14Kudryashev Stenta Schmelz Wiesand U. Degiacomi M.T. Münnich Bleck C.K. Kowal Diepold Heinz D.W. Dal Peraro In situ injectisome.Elife. 2: e00792Crossref (81) periodicity helical 5.7 per turn assessed solid-state (15Loquet Sgourakis N.G. Gupta R. Giller K. Riedel Goosmann C. Griesinger Kolbe Baker Becker Lange Atomic needle.Nature. 486: 276-279Crossref (277) reported. So far, only sizeable homologs SpaS were studies (16Zarivach Deng Vuckovic Felise H.B. Nguyen H.V. Miller Finlay B.B. self-cleaving EscU SpaS.Nature. 2008; 453: 124-127Crossref (112) 17Deane Graham S.C. Mitchell Flot Crystal Spa40, specificity switch flexneri system.Mol. 69: 267-276Crossref (51) 18Wiesand Sorg I. van den Heuvel Lührs recognition YscU enterocolitica.J. 385: 854-866Crossref (37) 19Lountos G.T. Austin B.P. Nallamsetty Waugh D.S. resolution domain pestis YscU, regulatory secretion.Protein 18: 467-474Crossref (42) 20Saijo-Hamano Imada Minamino Kihara Shimada Kitao Namba FlhA implication export.Mol. 76: 260-268Crossref (65) 21Bange G. Kümmerer N. Bozkurt Wild Sinning provides adaptor late building blocks system.Proc. 11295-11300Crossref (126) 22Moore Jia Helicobacter pylori.J. Chem. 285: 21060-21069Abstract (35) 23Worrall L.J. C-terminal InvA.Protein 19: 1091-1096Crossref (63) 24Abrusci Vergara-Irigaray Beeby M.D. Hendrixson Roversi Friede M.E. Deane Jensen G.J. Tang C.M. Architecture major apparatus.Nat. 20: 99-104Crossref While no could deduced SpaSC, homolog (MxiA) crystallized nonameric (24Abrusci Besides SpaS, minor SpaR To evaluate complete encoded pathogenicity island 1 (SPI-1) (S. Typhimurium), including 1, see nomenclature), employed complementing spectrometry (MS)-based strategies, standards (PCS) (25Kito Ota Fujita Ito toward spectrometric quantification multiprotein complexes.J. Proteome Res. 2007; 792-800Crossref (73) peptides (26Gerber Rush Stemman Kirschner M.W. Gygi S.P. Absolute phosphoproteins lysates tandem MS.Proc. 2003; 100: 6940-6945Crossref (1542) Both strategies employ ratiometric comparison quantity quantities same 2). These successfully study assemblies low hydrophobicity, and/or stoichiometric range (e.g. 27Nanavati Gucek Milne Subramaniam Markey Stoichiometry absolute fluorescent standards.Mol. Cell. Proteomics. 7: 442-447Abstract (40) 28Olinares P.D. Kim Davis J.I. Wijk K.J. Subunit stoichiometry, evolution, functional implications asymmetric plant plastid ClpP/R protease Arabidopsis.Plant 23: 2348-2361Crossref (58) 29von Appen Kosinski Sparks Ori DiGuilio A.L. Vollmer Mackmull M.-T. Banterle Parca Kastritis Buczak Mosalaganti Hagen Andres-Pons Lemke E.A. Bork Antonin Glavy Bui K.H. Beck human nuclear pore complex.Nature. 526: 140-143Crossref (241) heterogeneous, remains challenge. Using optimized MS analysis, able reliably deduce SPI-1 Typhimurium. reproduced structure-based 24:24:15 PrgH, PrgK, InvG, validated approach, proposed first time situ. More importantly, report Combined predicted topologies suggests patch houses 104 total, dense whose process can now studied greater detail. length control switching (30Lefebre controls 111: 817-822Crossref (36) provided further help develop inhibitors central virulence pathogens. By combining quantitative spectrometry, show MS-based extended highly wide multiple Chemicals Sigma-Aldrich (St. Louis, MO) unless otherwise specified. Detergent n-dodecyl-β-d-maltoside (DDM) was Affimetrix-Anatrace (Maumee, OH). SERVA Blue G SERVAGel™ TG PRiME™ 8–16% precast gels Serva (Heidelberg, Germany). NativePAGE Novex Bis-Tris 3–12% Life Technologies (Carlsbad, CA). Primers synthetized Eurofins (Ebersberg, Germany) Integrated DNA (Coralville, IA). Arg10 (13C6, 15N4 - arginine) Cambridge Isotope Laboratories (Tewksbury, MA) Lys8 15N2 lysine) Silantes (Munich, Stable Thermo Fisher (Waltham, MA). strains plasmids listed Table S1. All derived strain SL1344 (31Hoiseth S.K. Stocker B.A. Aromatic-dependent non-virulent effective live vaccines.Nature. 1981; 291: 238-239Crossref (1586) grown 37 °C LB broth supplemented 0.3 m NaCl aeration enhance expression genes SPI-1. pMAL-c5x-PCS 2 cloned Gibson cloning according published (32Gibson D.G. Young Chuang R.-Y. Venter J.C. Hutchison 3rd, C.A. Smith H.O. Enzymatic molecules kilobases.Nat. Methods. 343-345Crossref (5445) primers S2. For PCS purification, Escherichia coli AT713 argA21, lysA22) defined M9 medium (Table S3) 27 200 rpm, mm IPTG induce maltose binding (MBP) fusion plasmid pMAL-c5x. Cultures required streptomycin (50 μg/ml), tetracycline (12.5 ampicillin (100 μg/ml). Analysis III-dependent culture carried out described (33Monjarás Feria J.V. Stierhof Y.-D. Role autocleavage Typhimurium.MBio. e01459-15Crossref detection, samples subjected SDS-PAGE (Serva), transferred onto PVDF (Bio-Rad, Hercules, CA), probed primary antibodies anti-SipB, anti-InvJ, anti-PrgH, antiSpaSN, M2 anti-FLAG. Secondary goat anti-mouse IgG DyLight 800 conjugate anti-rabbit 680 (Thermo Scientific Pierce, Rockford, IL). Detection performed Odyssey imaging (Li-Cor, Lincoln, NE). Membrane fractionation, solubilization, immunoprecipitation (IP) 34Fischer Zilkenat Gerlach R.G. Renard B.Y. Pre- post-processing workflow affinity data.J. 2239-2249Crossref (5) Purification wild-type SpaSN258AFLAG 33Monjarás n-dodecyl-N,N-dimethylamine-N-oxide replaced DDM (0.7% lysis/extraction, 0.1% maintenance) lysis extraction throughout protocol. initial concentration 35% (w/v) CsCl prepare gradient. Purified negatively stained 1% aqueous uranyl acetate on carbon-coated copper grids. Micrographs recorded JEM-1400Plus (JEOL, Tokyo, Japan) microscope 120 kV. native-PAGE purified identification selection suitable design peptide-concatenated (PCS), bands corresponding excised blue in-gel digested trypsin (35Borchert Dieterich Krug Schütz Jung Nordheim Sommer R.J. Macek Proteogenomics Pristionchus pacificus distinct proteome nematode models.Genome 837-846Crossref (129) pilot experiment whether consecutive digests gel piece would improve yield tryptic qualitatively (additional unique peptides) quantitatively (more high intensity peptide) (data shown). procedure improvement 20% identified sequenced spectrometry; four even improved 40% (SpaR GATHVLE, AGIIDADAAR, PrgK LYSAIEQR, SpaQ MDDLVFAGNK). Of second digest, 38% digest. Because improvements, decided routinely use extractions. After each step, extracted desalted C18 StageTips (36Rappsilber Mann Ishihama Protocol micro-purification, enrichment, pre-fractionation storage proteomics StageTips.Nat. Protoc. 1896-1906Crossref (2569) Corresponding eluates LC-MS/MS analysis. native-gel containing mixed "heavy" labeled construct prior digestion. peptides, divided three equal parts. QVIFLALAK (SpaQ) VGVPVIVDIK (SpaS), C terminus Scientific), added amounts: 0.375, 0.75, 1.5 pmol. mixtures either EasyLC II nano-HPLC (Proxeon Biosystems) LTQ Orbitrap Elite spectrometer 1000 nano-UHPLC Biosystems, Odense, Denmark) Q Exactive HF both (37Carpy Graf Koch Popic Hauf phosphoproteome dynamics during cycle Schizosaccharomyces pombe (fission yeast).Mol. 1925-1936Abstract (103) 38Kelstrup C.D. Jersie-Christensen R.R. Batth T.S. Arrey T.N. Kuehn Kellmann Olsen Rapid deep proteomes faster sequencing benchtop quadrupole ultra-high-field spectrometer.J. 6187-6195Crossref (137) Peptide injected column HPLC solvent (LTQ Elite: 0.5% acetic acid; HF: formic acid) flow rate 500 nl/min subsequently eluted 116 min (PCS analyses) 5–33-50–90% B (80% acetonitrile 57 gradient (quantification isotope-labeled) 10–33-50–90% acid). During elution, kept constant nl/min. most intense precursor ions sequentially fragmented scan collision-induced dissociation, masses excluded 60 s. some cases, inclusion list light- heavy-labeled applied. HF, seven HCD fragmentation. isotope-labeled, full spectra acquired m/z 480–705. An applied, additional allowed set 120,000. values MS/MS fragmentation 3 × 106 105 charges (Q HF) 5 103 (Orbitrap Elite). maximal injection 110 ms 25 ms, respectively. data processed setting false discovery MaxQuant software (versions 1.2.2.9 1.5.2.8) 39Cox enables rates, individualized p.p.b.-range accuracies proteome-wide quantification.Nat. Biotechnol. 26: 1367-1372Crossref (9143) 40Cox Neuhauser Michalski Scheltema R.A. Andromeda: search engine integrated environment.J. 10: 1794-1805Crossref (3446) slight modifications. database Andromeda (40Cox part MaxQuant. searched against consisting 10,152 entries (uniprot 99287, March 2009 uniprot 216597, July 11, 2012), sequences 248 commonly observed contaminants. search, missed cleavages allowed. Carbamidomethylation cysteine fixed modification, N-terminal acetylation oxidation methionine variable Initial tolerance 6 ppm (versus 1.2.2.9) 4.5 1.5.2.8), respectively, fragment ion level 0.5 Da dissociation Higher-energy collisional (HCD) Quantitative without restrictions rate. latter case, filtered manually posterior error probability (41Käll Storey J.D. MacCoss M.J. Noble W.S. Posterior probabilities rates: Two sides coin.J. 40-44Crossref (210) threshold 0.01. candidates
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (60)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....