Identification of Quantitative Trait Loci Underlying Proteome Variation in Human Lymphoblastoid Cells

International HapMap Project Proteome Human proteome project Coding region
DOI: 10.1074/mcp.m900378-mcp200 Publication Date: 2010-02-24T02:38:44Z
ABSTRACT
Population-based variability in protein expression patterns, especially humans, is often observed but poorly understood. Moreover, very little known about how interindividual genetic variation contributes to patterns. To begin address this, we describe elements of technical and biological variations contributing 544 proteins a population 24 individual human lymphoblastoid cell lines that have been extensively genotyped as part the International HapMap Project. We determined levels 10% were tightly correlated doubling rates. Using publicly available genotypes for these lines, applied association approach identify quantitative trait loci associated with variation. Results identified forms corresponding 15 which responsible >50% The located cis gene coding transcript 19 forms. Four non-synonymous single nucleotide polymorphisms resulted migration pattern changes two-dimensional gel. This first description large scale proteomics analysis demonstrating direct relationship between genome proteome cells. Recent research has shown both humans model organisms behaves complex (1.Monks S.A. Leonardson A. Zhu H. Cundiff P. Pietrusiak Edwards S. Phillips J.W. Sachs Schadt E.E. Genetic inheritance lines.Am. J. Hum. Genet. 2004; 75: 1094-1105Abstract Full Text PDF PubMed Scopus (299) Google Scholar, 2.Bergen A.W. Baccarelli McDaniel T.K. Kuhn K. Pfeiffer R. Kakol Bender Jacobs Packer B. Chanock S.J. Yeager M. sequence effects on expression.BMC Genomics. 2007; 8: 296Crossref (5) 3.Brem R.B. Kruglyak L. landscape complexity across 5,700 traits yeast.Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 1572-1577Crossref (472) 4.Brem Yvert G. Clinton dissection transcriptional regulation budding yeast.Science. 2002; 296: 752-755Crossref (1058) 5.Gilad Y. Rifkin Pritchard J.K. Revealing architecture regulation: promise eQTL studies.Trends 2008; 24: 408-415Abstract (374) Scholar). basis can be treated manner similar other phenotypes, such body weight blood pressure. identification associating mRNA (expression (eQTL) 1The abbreviations used are:eQTLexpression locus (loci if plural)LCLlymphoblastoid line2Dtwo-dimensionalBH-FDRBenjamini Hochberg false discovery rateCEPHCentre d'Etude du PolymorphismeCEUCaucasians European descent living UtahGWAgenome-wide associationLDlinkage disequilibriumNS-SNPnon-synonymous polymorphismPDTpopulation timepeQTLprotein plural)QTLquantitative plural)SNPsingle polymorphismIDidentityLCP1L-plastinCPNE1Copine-1HCLS1hematopoietic cell-specific lyn substrate 1UTRuntranslated regionEXOC4exocyst component 4.) reported yeast mice using recombinant inbred strains (6.Ronald Brem Whittle Local regulatory Saccharomyces cerevisiae.PLoS 1: e25Crossref (123) 7.Cervino A.C. Li Laurie C. Tokiwa Lum P.Y. Wang Castellani L.W. Lusis A.J. Carlson A.B. Integrating QTL high-density SNP analyses Insig2 susceptibility plasma cholesterol levels.Genomics. 86: 505-517Crossref (118) 8.Davis R.C. Cervino Péterfy Ultrafine mapping SNPs from mouse C57BL/6J, DBA/2J, C57BLKS/J diabetes atherosclerosis susceptibility.Diabetes. 54: 1191-1199Crossref (33) 9.Ghazalpour Doss Sheth S.S. Ingram-Drake L.A. Drake T.A. Genomic metabolic pathway mice.Genome Biol. 6: R59Crossref 10.Schadt Monks Che N. Colinayo V. Ruff T.G. Milligan S.B. Lamb J.R. Cavet Linsley P.S. Mao Stoughton Friend S.H. Genetics surveyed maize, man.Nature. 2003; 422: 297-302Crossref (1192) 11.Doss Cis-acting Res. 15: 681-691Crossref (230) It also described lymphocytes, Epstein-Barr virus-transformed (LCLs), tissue biopsies (10.Schadt 12.Emilsson Thorleifsson Zhang A.S. Zink F. Helgason Walters G.B. Gunnarsdottir Mouy Steinthorsdottir Eiriksdottir G.H. Bjornsdottir Reynisdottir I. Gudbjartsson D. Helgadottir Jonasdottir Styrkarsdottir U. Gretarsdottir Magnusson K.P. Stefansson Fossdal Kristjansson Gislason H.G. T. Leifsson B.G. Thorsteinsdottir Gulcher Reitman M.L. Kong its effect disease.Nature. 452: 423-428Crossref (1016) 13.Schadt Molony Chudin E. Hao Yang X. Kasarskis Suver Millstein Sieberts GuhaThakurta Derry Storey J.D. Avila-Campillo Kruger M.J. Johnson J.M. Rohl C.A. van Nas Mehrabian Smith Guengerich F.P. Strom S.C. Schuetz Rushmore T.H. Ulrich Mapping liver.PLoS e107Crossref (787) 14.Dermitzakis E.T. Stranger B.E. expression.Mamm. Genome. 2006; 17: 503-508Crossref (41) 15.Stranger Forrest M.S. Clark A.G. Minichiello Deutsch Lyle Hunt Kahl Antonarakis S.E. Tavaré Deloukas Dermitzakis Genome-wide associations humans.PLoS e78Crossref (432) 16.Stranger Dunning Ingle C.E. Beazley Thorne Redon Bird C.P. de Grassi Lee Tyler-Smith Carter Scherer S.W. Hurles M.E. Relative impact copy number phenotypes.Science. 315: 848-853Crossref (1357) 17.Stranger Nica Dimas Flicek Koller Montgomery Population genomics expression.Nat. 39: 1217-1224Crossref (916) 18.Cheung V.G. Conlin L.K. Weber T.M. Arcaro Jen K.Y. Morley Spielman R.S. Natural assessed cells.Nat. 33: 422-425Crossref (463) 19.Cheung Ewens K.G. Burdick J.T. determinants by regional genome-wide association.Nature. 437: 1365-1369Crossref (487) 20.Morley C.M. Devlin J.L. Cheung expression.Nature. 430: 743-747Crossref (953) 21.Spielman Bastone W.J. Common variants account differences among ethnic groups.Nat. 226-231Crossref (400) Several recent studies narrow list candidate genes Type I coronary artery disease obese (7.Cervino These initial established more than 80% phenotypes are heritable that, average, 30% due sources. As result, suggests may an additional powerful method uncovering causal (5.Gilad 22.Pastinen Ge Hudson T.J. Influence polymorphism expression.Hum. Mol. R9-16Crossref (108) 23.Pastinen Gurd Gaudin Dore Lemire Lepage Harmsen common haplotypes.Hum. 14: 3963-3971Crossref (84) 24.Pastinen Sladek Sammak Lavergne Villeneuve Brändström Beck Verner Kingsley Labuda Morgan Vohl M.C. Naumova A.K. Sinnett A survey epigenetic affecting expression.Physiol. 16: 184-193Crossref (214) 25.Dixon A.L. Liang Moffatt M.F. Chen W. Heath Wong K.C. Taylor Burnett Gut Farrall Lathrop G.M. Abecasis G.R. Cookson W.O. study global 1202-1207Crossref (796) 26.Drake Davis data syndrome mice.Am. Ther. 12: 503-511Crossref (22) plural) line Benjamini rate Centre Polymorphisme Caucasians Utah linkage disequilibrium time identity L-plastin Copine-1 hematopoietic 1 untranslated region exocyst 4. Most reactive relationships several hundred multiple types environmental variables (26.Drake 27.Cookson Rev. 2009; 10: 184-194Crossref (615) 28.Schadt Exploiting naturally occurring DNA molecular profiling dissect drug response traits.Curr. Opin. Biotechnol. 647-654Crossref (45) Consequently, components involved could hundreds. However, phenotype must relate proteins. One hypothesis each should less complexly clinical phenotype. Therefore, determining affords building bottom up. Furthermore, understanding this practical implications biomarker where utilized co-variables process. any given level influenced abundance post-translational modifications increase or decrease turnover physiological conditions. at means frequently, do not correlate well (29.Gygi S.P. Rochon Franza B.R. Aebersold Correlation yeast.Mol. Cell. 1999; 19: 1720-1730Crossref (3193) many directly related degree type modifications, alterations folding ubiquitin (30.Xie Vucetic Iakoucheva L.M. Oldfield C.J. Dunker Obradovic Z. Uversky V.N. Functional anthology intrinsic disorder. 3. Ligands, diseases intrinsically disordered proteins.J. Proteome 1917-1932Crossref (315) 31.Vucetic Xie 2. Cellular components, domains, terms, developmental processes, diversities long regions.J. 1899-1916Crossref (207) 32.Xie 1. Biological processes functions 1882-1898Crossref (449) deeper genotype ascertained studying proteome. Efforts brain (33.Melzer Perry Hernandez Corsi A.M. Stevens Rafferty Lauretani Murray Gibbs Paolisso Rafiq Simon-Sanchez Lango Scholz Weedon M.N. Arepalli Rice Washecka Hurst Britton Henley Leemput Newman Tranah Harris Panicker Dayan Bennett McCarthy M.I. Ruokonen Jarvelin M.R. Guralnik Bandinelli Frayling Singleton Ferrucci identifies (pQTLs).Plos 4: e1000072Crossref (361) 34.Foss E.J. Radulovic Shaffer Ruderfer D.M. Bedalov Goodlett D.R. yeast.Nat. 1369-1375Crossref (186) 35.Klose Nock Herrmann Stühler Marcus Blüggel Krause Schalkwyk L.C. Rastan Brown S.D. Büssow Himmelbauer Lehrach proteome.Nat. 30: 385-393Crossref (213) yeast, Foss et al. (34.Foss Scholar) compared results protein-associated identical samples resulting intercross two divergent strains. proteomic just variation; however, was readily mapped those implies either stochastic noise present evaluation In support latter assertion, linkages outside codes (i.e. trans). words, alleles likely appear primary regulators system. observation made Klose (35.Klose describing shifts patterns (2D) gels tissue. although there significant literature efforts QTL, lagged behind. one study, Melzer experiments associate (SNPs) 42 serum detected assays 1200 subjects. effort eight contrast work Scholar), mostly surrounding transcript-coding allele cis). Collectively, previous highlight complexities identifying transcripts. success future will highly dependent most appropriate methods quantitatively evaluating Large challenging methodological Shotgun approaches digested mixtures separated liquid chromatography upstream mass spectrometric detection increasingly unbiased proteomics. approach, relative quantitation carried out differential labeling isotopic reagents label-free methods, peak height determination spectral counting (36.Mann SILAC.Nat. Cell 7: 952-958Crossref (769) 37.Gygi Rist Gerber Turecek Gelb M.H. Quantitative isotope-coded affinity tags.Nat. 994-999Crossref (4362) 38.Finney G.L. Blackler A.R. Hoopmann Canterbury Wu C.C. MacCoss Label-free comparative chromatographic alignment high-resolution muLC-MS data.Anal. Chem. 80: 961-971Crossref (54) 39.Zhang VerBerkmoes N.C. Langston M.A. Uberbacher Hettich R.L. Samatova N.F. Detecting shotgun proteomics.J. 5: 2909-2918Crossref (329) 40.Carvalho P.C. Hewel Barbosa V.C. Yates 3rd, Identifying feature selection.Genet. 342-356Crossref (74) 41.Washburn M.P. Ulaszek Deciu Schieltz Analysis generated via multidimensional technology.Anal. 74: 1650-1657Crossref (383) When uncover genomic variation, appealing would target intact isoforms reliably monitored approach. Currently, reliable 2D DIGE. takes advantage properties fluorescent dyes coupled format DIGE (42.Lilley K.S. Friedman D.B. All DIGE: quantification technology differential-display 2D-gel proteomics.Expert Proteomics. 401-409Crossref (247) 43.Friedman Lilley Optimizing difference gel electrophoresis (DIGE) technology.Methods 428: 93-124Crossref technical, biological, sources small cohort LCLs derived (CEPH) (CEU) purpose mentioned above, unique allowing ability monitor independently. allow influencing addition influence pI protein. determine much explained performed (peQTL) basal cis-only (GWA) approaches. total peQTL phenotypes. affirm cellular provide broad complement our demonstrate sensitivity specificity Sodium chloride, Trizma (Tris base), bromphenol blue, chloroform, N,N-dimethylformamide, phosphatase inhibitor, sodium carbonate, bicarbonate, ammonium monobasic phosphate, l-lysine, α-cyano-4-hydroxycinnamic acid obtained Sigma-Aldrich. Urea, thiourea, SDS, DTT, Tris, iodoacetamide GE Healthcare. Protein (CyDye fluors) N-hydroxysuccinimide ester group reaction ε amino lysine CHAPS USB Corp. Complete Mini protease inhibitor mixture tablets Roche Applied Science. Methanol, acetonitrile, HPLC grade water & Jackson. Acetic Mallinckrodt Baker. CEPH-CEU acquired Coriell Institute Medical Research. Twenty-four collection repository. Identification numbers GM12057, GM07345, GM12145, GM10860, GM11829, GM12056, GM11840, GM11830, GM12004, GM12144, GM10846, GM07357, GM11839, GM12003, GM06994, GM11993, GM10856, GM11992, GM07000, GM07348, GM10854, GM07029, GM10838, GM10851. Cells cultur
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (36)