Integrals and chaos in generalized Hénon-Heiles Hamiltonians

DOI: 10.1088/1402-4896/adbb2a Publication Date: 2025-03-13T16:22:30Z
ABSTRACT
Abstract We study the approximate (formal) integrals of motion in Hamiltonian <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>H</mml:mi> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mfenced close=")" open="("> <mml:msup> <mml:mover accent="true"> <mml:mi>x</mml:mi> <mml:mo>̇</mml:mo> </mml:mover> </mml:msup> <mml:mo>+</mml:mo> <mml:mi>y</mml:mi> </mml:mfenced> <mml:mi>ϵ</mml:mi> <mml:mspace width="0.25em"/> <mml:mi>α</mml:mi> <mml:mn>3</mml:mn> </mml:math> which is an extension usual Hénon-Heiles that has α = − 1/3. compare theoretical surfaces section (at y 0) with exact calculated by integrating numerically many orbits. For small ϵ , invariant curves and are close to each other, but for large there differences. The most important appearance chaos case, becomes dominant as approaches escape perturbation &lt; 0. particular cases 1/3, represents integrable system, Finally, we examine generation through resonance overlap mechanism case 1/3 (the original system) showing both homoclinic heteroclinic intersection asymptotic unstable periodic
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (34)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....