Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4 *

0103 physical sciences 01 natural sciences
DOI: 10.1088/1674-1056/ac2b92 Publication Date: 2021-09-30T07:13:25Z
ABSTRACT
Using high-resolution angle-resolved and time-resolved photoemission spectroscopy, we have studied the low-energy band structures in occupied and unoccupied states of three ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4 near the Fermi level. In previously confirmed topological insulator GeBi2Te4 compounds, we confirmed the existence of the Dirac surface state and found that the bulk energy gap is much larger than that in the first-principles calculations. In SnBi2Te4 compounds, the Dirac surface state was observed, consistent with the first-principles calculations, indicating that it is a topological insulator. The experimental detected bulk gap is a little bit larger than that in calculations. In Sn0.571Bi2.286Se4 compounds, our measurements suggest that this nonstoichiometric compound is a topological insulator although the stoichiometric SnBi2Se4 compound was proposed to be topological trivial.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (44)
CITATIONS (10)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....