Effects of the Novel NMDA Antagonists CP-98,113, CP-101,581 and CP-101,606 on Cognitive Function and Regional Cerebral Edema Following Experimental Brain Injury in the Rat
Male
Brain Edema
Receptors, N-Methyl-D-Aspartate
Rats
3. Good health
Rats, Sprague-Dawley
03 medical and health sciences
Cognition
0302 clinical medicine
Piperidines
Memory
Brain Injuries
Reaction Time
Animals
Infusions, Parenteral
Maze Learning
Excitatory Amino Acid Antagonists
DOI:
10.1089/neu.1997.14.211
Publication Date:
2009-01-30T06:38:46Z
AUTHORS (5)
ABSTRACT
The present study evaluated the effects of two novel N-methyl-D-aspartate (NMDA) receptor blockers and ifenprodil derivatives, CP-101,606 and CP-101,581, and their racemic mixture CP-98,113, on spatial memory and regional cerebral edema following experimental fluid-percussion (FP) brain injury in the rat (n = 66). Fifteen minutes after brain injury (2.5 atm), animals received either (1) CP-98,113 (5 mg/kg, i.p., n = 11), (2) CP-101,581 (5 mg/kg, i.p., n = 13), (3) CP-101,606 (6.5 mg/kg, i.p., n = 12), or (4) DMSO vehicle (equal volume, n = 12); followed by a continuous 24-h subcutaneous infusion of drug at a rate of 1.5 mg/kg/h by means of miniature osmotic (Alzet) pumps implanted subcutaneously. Control (uninjured) animals were subjected to identical anesthesia and surgery without injury and received DMSO vehicle (n = 8); CP-98,113 (5 mg/kg, i.p., n = 3); CP-101,581 (5 mg/kg, i.p., n = 3); or CP-101,606 (6.5 mg/kg, i.p., n = 3). FP brain injury produced a significant cognitive impairment assessed at 2 days postinjury using a well-characterized testing paradigm of visuospatial memory in the Morris Water Maze (MWM) (p < 0.001). Administration of either CP-98,113, CP-101,581, or CP-101,606 had no effect on sham (uninjured) animals, but significant attenuated spatial memory impairment assessed at 2 days postinjury (p = 0.004, p = 0.02, or p = 0.02, respectively). Administration of CP-89,113 but not CP-101,581 or CP-101,606 significantly reduced the extent of regional cerebral edema in the cortex adjacent to the site of injury (p < 0.05) and in the ipsilateral hippocampus (p < 0.05) and thalamus (p < 0.05). These results suggest that excitatory neurotransmission may play a pivotal role in the pathogenesis of memory dysfunction following traumatic brain injury (TBI) and that blockade of the NMDA receptor may significantly attenuate cognitive deficits associated with TBI.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (98)
CITATIONS (58)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....