Genomic Evidence for Sensorial Adaptations to a Nocturnal Predatory Lifestyle in Owls
0301 basic medicine
Genome
Adaptation, Biological
Strigiformes
Biological Evolution
Circadian Rhythm
03 medical and health sciences
Hearing
Predatory Behavior
Animals
Selection, Genetic
Phylogeny
Vision, Ocular
Research Article
DOI:
10.1093/gbe/evaa166
Publication Date:
2020-08-07T19:23:26Z
AUTHORS (5)
ABSTRACT
AbstractOwls (Strigiformes) evolved specific adaptations to their nocturnal predatory lifestyle, such as asymmetrical ears, a facial disk, and a feather structure allowing silent flight. Owls also share some traits with diurnal raptors and other nocturnal birds, such as cryptic plumage patterns, reversed sexual size dimorphism, and acute vision and hearing. The genetic basis of some of these adaptations to a nocturnal predatory lifestyle has been studied by candidate gene approaches but rarely with genome-wide scans. Here, we used a genome-wide comparative analysis to test for selection in the early history of the owls. We estimated the substitution rates in the coding regions of 20 bird genomes, including 11 owls of which five were newly sequenced. Then, we tested for functional overrepresentation across the genes that showed signals of selection. In the ancestral branch of the owls, we found traces of positive selection in the evolution of genes functionally related to visual perception, especially to phototransduction, and to chromosome packaging. Several genes that have been previously linked to acoustic perception, circadian rhythm, and feather structure also showed signals of an accelerated evolution in the origin of the owls. We discuss the functions of the genes under positive selection and their putative association with the adaptation to the nocturnal predatory lifestyle of the owls.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (99)
CITATIONS (11)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....