Embracing native diversity to enhance the maximum quantum efficiency of photosystem II in maize

0106 biological sciences Genetic Variation Photosystem II Protein Complex Zea mays 01 natural sciences Plant Leaves Phenotype Photosynthesis Alleles Responsible Consumption and Production Genome-Wide Association Study Plant Proteins Research Article
DOI: 10.1093/plphys/kiae670 Publication Date: 2024-12-23T08:21:48Z
ABSTRACT
Abstract The sustainability of maize cultivation would benefit tremendously from early sowing, but is hampered by low temperatures during early development in temperate climates. We show that allelic variation within the gene encoding subunit M of the NADH-dehydrogenase-like (NDH) complex (ndhm1) in a European maize landrace affects several quantitative traits that are relevant during early development in cold climates through NDH-mediated cyclic electron transport around photosystem I, a process crucial for photosynthesis and photoprotection. Beginning with a genome-wide association study for maximum potential quantum yield of photosystem II in dark-adapted leaves (Fv/Fm), we capitalized on the large phenotypic effects of a hAT transposon insertion in ndhm1 on multiple quantitative traits (early plant height [EPH], Fv/Fm, chlorophyll content, and cold tolerance) caused by the reduced protein levels of NDHM and associated NDH components. Analysis of the ndhm1 native allelic series revealed a rare allele of ndhm1 that is associated with small albeit significant improvements of Fv/Fm, photosystem II efficiency in light-adapted leaves (ΦPSII), and EPH compared with common alleles. Our work showcases the extraction of favorable alleles from locally adapted landraces, offering an efficient strategy for broadening the genetic variation of elite germplasm by breeding or genome editing.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (66)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....