Eshelby formalism for nano-inhomogeneities
0203 mechanical engineering
02 engineering and technology
0210 nano-technology
DOI:
10.1098/rspa.2005.1520
Publication Date:
2005-09-20T19:46:34Z
AUTHORS (4)
ABSTRACT
The Eshelby formalism for inclusion/inhomogeneity problems is extended to the nano-scale at which surface/interface effects become important. The interior and exterior Eshelby tensors for a spherical inhomogeneous inclusion with the interface stress effect subjected to an arbitrary uniform eigenstrain embedded in an infinite alien matrix, and the stress concentration tensors for a spherical inhomogeneity subjected to an arbitrary remote uniform stress field are obtained. Unlike their counterparts at the macro-scale, the Eshelby and stress concentration tensors are, in general, not uniform inside the inhomogeneity but are position-dependent. They have the property of radial transverse isotropy. It is also shown that the size-dependence of the Eshelby tensors and the stress concentration tensors follow very simple scaling laws. Finally, the Eshelby formula to calculate the strain energy in the presence of the interface effect is given.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (205)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....