Machine learning approaches classify clinical malaria outcomes based on haematological parameters

Male Artificial neural network 0301 basic medicine 570 Artificial intelligence Immunology 610 Handling Imbalanced Data in Classification Problems Machine Learning 03 medical and health sciences Automated Analysis of Blood Cell Images Artificial Intelligence General & Internal Medicine Health Sciences Machine learning Humans Child 11 Medical and Health Sciences 0303 health sciences Malaria Parasite Detection FOS: Clinical medicine R Public Health, Environmental and Occupational Health Classification Computer science Uncomplicated Malaria Malaria 3. Good health Treatment Outcome Haematological parameters Child, Preschool Severe Malaria Computer Science Physical Sciences Medical Image Analysis Medicine Female Computer Vision and Pattern Recognition Research Article
DOI: 10.1101/2020.09.23.20200220 Publication Date: 2020-09-24T15:05:47Z
ABSTRACT
AbstractBackgroundMalaria is still a major global health burden, with more than 3.2 billion people in 91 countries remaining at risk of the disease. Accurately distinguishing malaria from other diseases, especially uncomplicated malaria (UM) from non-malarial infections (nMI) remains a challenge. Furthermore, the success of rapid diagnostic tests (RDT) is threatened byPfhrp2/3deletions and decreased sensitivity at low parasitemia. Analysis of haematological indices can be used to support identification of possible malaria cases for further diagnosis, especially in travelers returning from endemic areas. As a new application for precision medicine, we aimed to evaluate machine learning (ML) approaches that can accurately classify nMI, UM and severe malaria (SM) using haematological parameters.MethodsWe obtained haematological data from 2,207 participants collected in Ghana; nMI (n=978), UM (n=526), and SM (n=703). Six different machine learning approaches were tested, to select the best approach. An artificial neural network (ANN) with three hidden layers was used for multi-classification of UM, SM, and uMI. Binary classifiers were developed to further identify the parameters that can distinguish UM or SM from nMI. Local interpretable model-agonistic explanations (LIME) were used to explain the binary classifiers.ResultsThe multi-classification model had greater than 85 % training and testing accuracy to distinguish clinical malaria from nMI. To distinguish UM from nMI, our approach identified platelet counts, red blood cell (RBC) counts, lymphocyte counts and percentages as the top classifiers of UM with 0.801 test accuracy (AUC = 0.866 and F1-score = 0.747). To distinguish SM from nMI, the classifier had a test accuracy of 0.960 (AUC= 0.983, and F1-score = 0.944) with mean platelet volume and mean cell volume being the unique classifiers of SM. Random forest was used to confirm the classifications and it showed that platelet and RBC counts were the major classifiers of UM, regardless of possible confounders such as patient age and sampling location.ConclusionsThe study provides proof of concept methods that classify UM and SM from nMI, showing that ML approach is a feasible tool for clinical decision support. In the future, ML approaches could be incorporated into clinical decision-support algorithms for the diagnosis of acute febrile illness, and monitoring response to acute SM treatment particularly in endemic settings.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (52)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....