CausalXtract: a flexible pipeline to extract causal effects from live-cell time-lapse imaging data

time-lapse image analysis granger causality QH301-705.5 Science Q R Medicine causal inference causal discovery Biology (General) tumor on chip live-cell imaging Computational and Systems Biology
DOI: 10.1101/2024.02.06.579177 Publication Date: 2024-02-09T01:08:43Z
ABSTRACT
AbstractLive-cell microscopy routinely provides massive amount of time-lapse images of complex cellular systems under various physiological or therapeutic conditions. However, this wealth of data remains difficult to interpret in terms of causal effects. Here, we describe CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged effects from morphodynamic features and cell-cell interactions in live-cell imaging data. CausalXtract methodology combines network-based and information-based frameworks, which is shown to discover causal effects overlooked by classical Granger and Schreiber causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular, we find that cancer associated fibroblasts directly inhibit cancer cell apoptosis, independently from anti-cancer treatment. CausalXtract uncovers also multiple antagonistic effects at different time delays. Hence, CausalXtract provides a unique computational tool to interpret live-cell imaging data for a range of fundamental and translational research applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (24)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....