Auto-oscillating Spin-Wave Modes of Constriction-Based Spin Hall Nano-oscillators in Weak In-Plane Fields

Condensed Matter - Mesoscale and Nanoscale Physics 0103 physical sciences Mesoscale and Nanoscale Physics (cond-mat.mes-hall) FOS: Physical sciences 01 natural sciences
DOI: 10.1103/physrevapplied.10.054017 Publication Date: 2018-11-07T11:49:46Z
ABSTRACT
We experimentally study the auto-oscillating spin-wave modes in NiFe/$��-$W constriction-based spin Hall nano-oscillators as a function of bias current, in-plane applied field strength, and azimuthal field angle, in the low-field range of 40-80 mT. We observe two different spin-wave modes: i) a linear-like mode confined to the minima of the internal field near the edges of the nanoconstriction, with weak frequency dependencies on the bias current and the applied field angle, and ii) a second, lower frequency mode that has significantly higher threshold current and stronger frequency dependencies on both bias current and the external field angle. Our micromagnetic modeling qualitatively reproduces the experimental data and reveals that the second mode is a spin-wave bullet and that the SHNO mode hops between the two modes, resulting in a substantial increase in linewidths. In contrast to the linear-like mode, the bullet is localized in the middle of the constriction and shrinks with increasing bias current. Utilizing intrinsic frequency doubling at zero field angle we can reach frequencies above 9 GHz in fields as low as 40 mT, which is important for the development of low-field spintronic oscillators with applications in microwave signal generation and neuromorphic computing.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (53)
CITATIONS (32)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....