Measuring the Loschmidt Amplitude for Finite-Energy Properties of the Fermi-Hubbard Model on an Ion-Trap Quantum Computer

0301 basic medicine QA76.75-76.765 Quantum Physics 03 medical and health sciences Physics QC1-999 FOS: Physical sciences Computer software Quantum Physics (quant-ph)
DOI: 10.1103/prxquantum.5.030323 Publication Date: 2024-08-05T14:22:43Z
ABSTRACT
Calculating the equilibrium properties of condensed-matter systems is one promising applications near-term quantum computing. Recently, hybrid quantum-classical time-series algorithms have been proposed to efficiently extract these from a measurement Loschmidt amplitude <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><a:mo fence="false" stretchy="false">⟨</a:mo><a:mi>ψ</a:mi><a:mrow><a:mo stretchy="false">|</a:mo></a:mrow><a:msup><a:mi>e</a:mi><a:mrow><a:mo>−</a:mo><a:mi>i</a:mi><a:mrow><a:mover><a:mi>H</a:mi><a:mo stretchy="false">^</a:mo></a:mover></a:mrow><a:mi>t</a:mi></a:mrow></a:msup><a:mrow><a:mo stretchy="false">|</a:mo></a:mrow><a:mi>ψ</a:mi><a:mo stretchy="false">⟩</a:mo></a:math> initial states <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" overflow="scroll"><k:mrow><k:mo stretchy="false">|</k:mo></k:mrow><k:mi>ψ</k:mi><k:mo stretchy="false">⟩</k:mo></k:math> and time evolution under Hamiltonian <q:math xmlns:q="http://www.w3.org/1998/Math/MathML" overflow="scroll"><q:mrow><q:mover><q:mi>H</q:mi><q:mo stretchy="false">^</q:mo></q:mover></q:mrow></q:math> up short times <u:math xmlns:u="http://www.w3.org/1998/Math/MathML" overflow="scroll"><u:mi>t</u:mi></u:math>. In this work, we study operation algorithm on present-day computer. Specifically, measure for Fermi-Hubbard model <x:math xmlns:x="http://www.w3.org/1998/Math/MathML" overflow="scroll"><x:mn>16</x:mn></x:math>-site ladder geometry (32 orbitals) Quantinuum H2-1 trapped-ion device. We assess effect noise implement algorithm-specific error-mitigation techniques. By using thus-motivated error model, numerically analyze influence full by measuring expectation values local observables at finite energies. Finally, estimate resources needed scaling algorithm. Published American Physical Society 2024
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (70)
CITATIONS (8)