Coherent states: Theory and some applications
0103 physical sciences
01 natural sciences
DOI:
10.1103/revmodphys.62.867
Publication Date:
2002-09-05T19:41:01Z
AUTHORS (3)
ABSTRACT
In this review, a general algorithm for constructing coherent states of dynamical groups for a given quantum physical system is presented. The result is that, for a given dynamical group, the coherent states are isomorphic to a coset space of group geometrical space. Thus the topological and algebraic structure of the coherent states as well as the associated dynamical system can be extensively discussed. In addition, a quantum-mechanical phase-space representation is constructed via the coherent-state theory. Several useful methods for employing the coherent states to study the physical phenomena of quantum-dynamic systems, such as the path integral, variational principle, classical limit, and thermodynamic limit of quantum mechanics, are described.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (212)
CITATIONS (1269)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....