A Nearly Optimal Lower Bound on the Approximate Degree of AC^0

Degree (music) Constant (computer programming) Constant function
DOI: 10.1109/focs.2017.10 Publication Date: 2017-11-14T13:59:34Z
ABSTRACT
The approximate degree of a Boolean function f : {-1, 1} <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> → is the least real polynomial that approximates pointwise to error at most 1/3. We introduce generic method for increasing given function, while preserving its computability by constant-depth circuits. Specifically, we show how transform any with d into F on O(n · polylog(n)) variables D = Ω(n xmlns:xlink="http://www.w3.org/1999/xlink">1/3</sup> xmlns:xlink="http://www.w3.org/1999/xlink">2/3</sup> ). In particular, if n xmlns:xlink="http://www.w3.org/1999/xlink">1-Ω(1)</sup> , then polynomially larger than d. Moreover, computed polynomial-size circuit, so F. By recursively applying our transformation, constant δ > 0 exhibit an AC xmlns:xlink="http://www.w3.org/1999/xlink">0</sup> xmlns:xlink="http://www.w3.org/1999/xlink">1-δ</sup> This improves over best previous lower bound ) due Aaronson and Shi (J. ACM 2004), nearly matches trivial upper holds function. Our bounds also apply (quasipolynomial-size) DNFs polylogarithmic width. describe several applications these results. give: For 0, quantum communication complexity in . A C(f) xmlns:xlink="http://www.w3.org/1999/xlink">2-o(1)</sup> where certificate f. separation optimal up o(1) term exponent. Improved secret sharing schemes reconstruction procedures
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (68)
CITATIONS (5)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....