Rapid sintering protocol produces dense ceria‐based ceramics

02 engineering and technology 0210 nano-technology
DOI: 10.1111/jace.15743 Publication Date: 2018-05-07T22:04:16Z
ABSTRACT
AbstractWe report on a rapid sintering protocol, which optimizes the preparation of 0‐29 mol% Gd‐doped ceria ceramics with density ≥98% of the theoretical crystal lattice value. The starting material is a nanometer grain‐sized powder prepared by carbonate co‐precipitation and calcined with minimal agglomeration and loss of surface area. Slow (5°C/min) heating of the green‐body from 500°C to the optimum temperature of rapid sintering (, dwell time <1 minute) followed by 20°C/min cooling to 1150°C with 6 minutes dwell time, produces maximum pellet density. increases from 1300 to ~1500°C with increase in Gd‐content, while the average grain size in the maximally dense pellets, as determined by scanning electron microscopy, ranges between 600 nm and ~1 μm. For each doping level, the logarithm of the average grain size decreases linearly with 1/T1. By avoiding extended exposure to sintering temperatures, this protocol is expected to minimize undesirable Gd segregation.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (15)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....