Association of Factor V Secretion with Protein Kinase B Signaling in Platelets from Horses with Atypical Equine Thrombasthenia
Veterinary sciences
Blood Platelets
1.1 Normal biological development and functioning
Blotting, Western
610
Veterinary and Food Sciences
Horse
0403 veterinary science
Clinical Research
Underpinning research
616
Animals
Veterinary Sciences
Horses
Agricultural
Blotting
AKT
Factor V
Fibrinogen
Hematology
04 agricultural and veterinary sciences
Case-Control Studies
Horse Diseases
EQUID
Western
Proto-Oncogene Proteins c-akt
Bleeding Diathesis
Signal Transduction
Thrombasthenia
DOI:
10.1111/jvim.13595
Publication Date:
2015-08-20T05:12:24Z
AUTHORS (5)
ABSTRACT
BackgroundTwo congenital bleeding diatheses have been identified in Thoroughbred horses: Glanzmann thrombasthenia (GT) and a second, novel diathesis associated with abnormal platelet function in response to collagen and thrombin stimulation.Hypothesis/ObjectivesPlatelet dysfunction in horses with this second thrombasthenia results from a secretory defect.AnimalsTwo affected and 6 clinically normal horses.MethodsEx vivo study. Washed platelets were examined for (1) expression of the αIIb‐β3 integrin; (2) fibrinogen binding capacity in response to ADP and thrombin; (3) secretion of dense and α‐granules; (4) activation of the mammalian target of rapamycin (mTOR)‐protein kinase B (AKT) signaling pathway; and (5) cellular distribution of phosphatidylinositol‐4‐phosphate‐3‐kinase, class 2B (PIK3C2B) and SH2 containing inositol‐5′‐phosphatase 1 (SHIP1).ResultsPlatelets from affected horses expressed normal amounts of αIIb‐β3 integrin and bound fibrinogen normally in response to ADP, but bound 80% less fibrinogen in response to thrombin. α‐granules only released 50% as much Factor V as control platelets, but dense granules released their contents normally. Protein kinase B (AKT) phosphorylation was reduced after thrombin activation, but mTOR Complex 2 (mTORC2) and phosphoinositide‐dependent kinase 1 (PDK1) signaling were normal. SH2‐containing inositol‐5'‐phosphatase 1 (SHIP1) did not localize to the cytoskeleton of affected platelets and was decreased overall consistent with reduced AKT phosphorylation.Conclusions and clinical significanceDefects in fibrinogen binding, granule secretion, and signal transduction are unique to this thrombasthenia, which we designate as atypical equine thrombasthenia.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (35)
CITATIONS (8)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....