Preconditioning Depolarizing Ramp Currents Enhance the Effect of Sodium Channel Blockers in Primary Sensory Afferents
Male
Afferent Pathways
10216 Institute of Anesthesiology
Action Potentials
Lidocaine
610 Medicine & health
10060 Epidemiology, Biostatistics and Prevention Institute (EBPI)
Tetrodotoxin
Electric Stimulation
Rats
03 medical and health sciences
2728 Neurology (clinical)
Nerve Fibers
0302 clinical medicine
2808 Neurology
Sensory Thresholds
Animals
2703 Anesthesiology and Pain Medicine
Anesthetics, Local
Rats, Wistar
Skin
Sodium Channel Blockers
DOI:
10.1111/ner.12031
Publication Date:
2013-02-19T21:24:24Z
AUTHORS (4)
ABSTRACT
The conformational state of voltage-gated sodium channels is an important determinant for the efficacy of both local anesthesia and electrical neuromodulation techniques. This study investigated the role of subthreshold preconditioning ramp currents on axonal nerve excitability parameters in the presence of sodium channel blockers in myelinated A and unmyelinated C fibers.A- and C-fiber compound action potentials were recorded extracellularly in vitro in saphenous nerve from adult rats. Nerve fibers were stimulated with a supramaximal current pulse either alone or after a 300-msec conditioning polarizing ramp current (between -10% and +100% of the original threshold current) in the presence and absence of lidocaine and tetrodotoxin (TTX). A computerized threshold tracking program (QTRAC), Institute of Neurology, University College London, London, UK) was used to determine the membrane thresholds.Preconditioning ramp currents of weak strengths increased membrane excitability. Stronger preconditioning ramp currents enhanced the potency of lidocaine and TTX to increase excitability thresholds. In A and C fibers stimulated with ramp currents of 110% (A fibers) and 40% (C fibers), lidocaine (80 μM) induced a 168 ± 15% (p < 0.001) and 302 ± 23% (p < 0.001) increase in threshold, respectively (no ramp current: 135 ± 9% and 124 ± 4%, respectively). TTX (16 nM) induced an increase in threshold of 455 ± 45% (p < 0.001) and 214 ± 22% (p = 0.005), respectively (no ramp current: 205 ± 12% and 128 ± 6%, respectively).Slow preconditioning ramp stimuli inactivate sodium currents. In the presence of sodium channel blockers, stronger ramp stimuli cause an increase in threshold, which is larger than that caused by the sodium channel blocker alone. Therefore, we conclude that small depolarizing ramp currents could be used to increase excitability threshold in the presence of low concentrations of local anesthetics. These additive effects might represent a target to address with peripheral nerve stimulation in order to suppress afferent pain signaling.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....