Intercropping enhances maize growth and nutrient uptake by driving the link between rhizosphere metabolites and microbiomes

Intercropping Monoculture Agroecosystem
DOI: 10.1111/nph.19906 Publication Date: 2024-06-14T12:54:32Z
ABSTRACT
Intercropping leads to different plant roots directly influencing belowground processes and has gained interest for its promotion of increased crop yields resource utilization. However, the precise mechanisms through which interactions between rhizosphere metabolites microbiome contribute production remain ambiguous, thus impeding understanding yield-enhancing advantages intercropping. This study conducted field experiments (initiated in 2013) pot experiments, coupled with multi-omics analysis, investigate plant-metabolite-microbiome maize. Field-based data revealed significant differences metabolite profiles soils maize monoculture In particular, intercropping exhibited higher microbial diversity chemodiversity. The chemodiversity composition were significantly related diversity, community composition, network complexity soil microbiomes, this relationship further impacted nutrient uptake. Pot-based findings demonstrated that exogenous application a metabolic mixture comprising key components enriched by (soyasapogenol B, 6-hydroxynicotinic acid, lycorine, shikimic phosphocreatine) enhanced root activity, content, biomass natural soil, but not sterilized soil. Overall, emphasized significance metabolite-microbe enhancing systems. It can provide new insights into controls within intensive agroecosystems, aiming enhance ecosystem services.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (75)
CITATIONS (21)