Salt stress and fluctuating light have separate effects on photosynthetic acclimation, but interactively affect biomass

Chlorophyll 0301 basic medicine fluctuating light Chloroplasts Light Nitrogen Acclimatization Photoperiod tomato Sodium Chloride Salt Stress light acclimation 03 medical and health sciences Solanum lycopersicum Biomass Photosynthesis salt stress Plant Proteins 2. Zero hunger photosynthesis Pigmentation 15. Life on land Carotenoids Plant Leaves stomatal conductance Plant Stomata
DOI: 10.1111/pce.13810 Publication Date: 2020-05-28T11:51:20Z
ABSTRACT
AbstractIn nature, soil salinity and fluctuating light (FL) often occur concomitantly. However, it is unknown whether salt stress interacts with FL on leaf photosynthesis, architecture, biochemistry, pigmentation, mineral concentrations, as well as whole‐plant biomass. To elucidate this, tomato (Solanum lycopersicum) seedlings were grown under constant light (C, 200 μmol m−2 s−1) or FL (5–650 μmol m−2 s−1), in combination with no (0 mM NaCl) or moderate (80 mM NaCl) salinity, for 14 days, at identical photoperiods and daily light integrals. FL and salt stress had separate effects on leaf anatomy, biochemistry and photosynthetic capacity: FL reduced leaf thickness as well as nitrogen, chlorophyll and carotenoid contents per unit leaf area, but rarely affected steady‐state and dynamic photosynthetic properties along with abundance of key proteins in the electron transport chain. Salt stress, meanwhile, mainly disorganized chloroplast grana stacking, reduced stomatal density, size and aperture as well as photosynthetic capacity. Plant biomass was affected interactively by light regime and salt stress: FL reduced biomass in salt stressed plants by 17%, but it did not affect biomass of non‐stressed plants. Our results stress the importance of considering FL when inferring effects of salt‐stress on photosynthesis and productivity under fluctuating light intensities.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (57)
CITATIONS (45)