Photophysics of a Coumarin in Different Solvents: Use of Different Solvatochromic Models
Aminocoumarins
Molecular Structure
Spectrophotometry
Solvents
Succinimides
Colorimetry
Photochemical Processes
01 natural sciences
0104 chemical sciences
DOI:
10.1111/php.12258
Publication Date:
2014-02-18T18:26:54Z
AUTHORS (3)
ABSTRACT
AbstractThis study reported the photophysics of 7‐(diethylamino)coumarin‐3‐carboxylic acid N‐succinimidyl ester (7‐DCCAE) in different neat solvents of varying polarity using steady‐state absorption, fluorescence emission and picosecond time‐resolved spectroscopy. In nonpolar solvents, the dye molecule predominantly exists in nonpolar structure and exhibits very low value of nonradiative decay rate constant (knr), demonstrating the emission takes place from S1‐LE to S0 ground state. The fluorescence quantum yields, lifetime values of 7‐DCCAE in different solvents are rationalized on the basis of intramolecular charge transfer (ICT) followed by twisted intramolecular charge transfer state formation (TICT) as well as specific solute–solvent interactions. Several solvatochromic models (such as Lippert, Dimroth, Kamlet–Taft, Catalán 3P and Catalán 4P models) were used to analyze the solvatochromic shift of 7‐DCCAE in different solvents. The different empirical models show that the observed results are better correlate for nonchlorinated solvents and provide statistically significant best‐fit result. A comparison was done between comparatively new solvatochromic model (Catalán 3P and Catalán 4P model) with Kamlet–Taft model. The ground state structure of the said molecule was optimized by using Density Functional Theory (DFT).
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (62)
CITATIONS (37)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....