Acetylcarnitine shuttling links mitochondrial metabolism to histone acetylation and lipogenesis
Histones
Glucose
Acetyl Coenzyme A
Lipogenesis
Fatty Acids
Acetylation
Biomedicine and Life Sciences
Acetylcarnitine
3. Good health
Mitochondria
DOI:
10.1126/sciadv.adf0115
Publication Date:
2023-05-03T17:58:40Z
AUTHORS (18)
ABSTRACT
The metabolite acetyl-CoA is necessary for both lipid synthesis in the cytosol and histone acetylation in the nucleus. The two canonical precursors to acetyl-CoA in the nuclear-cytoplasmic compartment are citrate and acetate, which are processed to acetyl-CoA by ATP-citrate lyase (ACLY) and acyl-CoA synthetase short-chain 2 (ACSS2), respectively. It is unclear whether other substantial routes to nuclear-cytosolic acetyl-CoA exist. To investigate this, we generated cancer cell lines lacking both ACLY and ACSS2 [double knockout (DKO) cells]. Using stable isotope tracing, we show that both glucose and fatty acids contribute to acetyl-CoA pools and histone acetylation in DKO cells and that acetylcarnitine shuttling can transfer two-carbon units from mitochondria to cytosol. Further, in the absence of ACLY, glucose can feed fatty acid synthesis in a carnitine responsive and carnitine acetyltransferase (CrAT)-dependent manner. The data define acetylcarnitine as an ACLY- and ACSS2-independent precursor to nuclear-cytosolic acetyl-CoA that can support acetylation, fatty acid synthesis, and cell growth.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (63)
CITATIONS (58)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....