Reconstitution of morphogen shuttling circuits
Mammals
Multidisciplinary
Endopeptidases
Animals
Drosophila
Biomedicine and Life Sciences
Ligands
Peptide Hydrolases
Signal Transduction
DOI:
10.1126/sciadv.adf9336
Publication Date:
2023-07-12T17:58:38Z
AUTHORS (6)
ABSTRACT
Developing tissues form spatial patterns by establishing concentration gradients of diffusible signaling proteins called morphogens. The bone morphogenetic protein (BMP) morphogen pathway uses a family of extracellular modulators to reshape signaling gradients by actively “shuttling” ligands to different locations. It has remained unclear what circuits are sufficient to enable shuttling, what other patterns they can generate, and whether shuttling is evolutionarily conserved. Here, using a synthetic, bottom-up approach, we compared the spatiotemporal dynamics of different extracellular circuits. Three proteins—Chordin, Twsg, and the BMP-1 protease—successfully displaced gradients by shuttling ligands away from the site of production. A mathematical model explained the different spatial dynamics of this and other circuits. Last, combining mammalian and
Drosophila
components in the same system suggests that shuttling is a conserved capability. Together, these results reveal principles through which extracellular circuits control the spatiotemporal dynamics of morphogen signaling.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (90)
CITATIONS (13)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....