Atom-glue stabilized Pt-based intermetallic nanoparticles

DOI: 10.1126/sciadv.adq6727 Publication Date: 2024-10-04T17:58:42Z
ABSTRACT
Pt-based nanoparticles (NPs) have been widely used in catalysis. However, this suffers from aggregation and/or sintering at working conditions. We demonstrate a robust strategy for stabilizing PtCo NPs under high temperature with strong interaction between M–N–C and PtCo NPs with Pt–M–N coordination, namely, “atom glue.” Such atom glue for stabilizing Pt-based NPs can be extended to Zn, Mn, Fe, Ni, Co, and Cu, being a versatile strategy for stabilizing PtCo NPs, which substantially promotes the performance toward oxygen reduction reaction (ORR) and fuel cell. Impressively, the mass activity (MA) reaches 2.99 A mg Pt −1 for ORR over g -Zn–N–C/PtCo, and 79.3% of the initial MA is maintained after 90K cycles in fuel cell. This work provides a versatile strategy for stabilizing Pt-based NPs via atom glue, which is likely to spark widespread interest across various fields.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (10)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....