Highly Potent RANTES Analogues either Prevent CCR5-Using Human Immunodeficiency Virus Type 1 Infection In Vivo or Rapidly Select for CXCR4-Using Variants

Receptors, CXCR4 0303 health sciences Receptors, CCR5 Sequence Homology, Amino Acid Anti-HIV Agents Molecular Sequence Data Genetic Variation HIV Infections Mice, SCID 3. Good health Disease Models, Animal Mice 03 medical and health sciences HIV-1 Animals Humans Amino Acid Sequence Chemokine CCL5
DOI: 10.1128/jvi.73.5.3544-3550.1999 Publication Date: 2019-12-31T18:26:57Z
ABSTRACT
ABSTRACT The natural ligands for the CCR5 chemokine receptor, macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and RANTES (regulated on T-cell activation, normal T-cell expressed and secreted), are known to inhibit human immunodeficiency virus (HIV) entry, and N-terminally modified RANTES analogues are more potent than native RANTES in blocking infection. However, potent CCR5 blocking agents may select for HIV-1 variants that use alternative coreceptors at less than fully inhibitory concentrations. In this study, two N-terminal chemical modifications of RANTES produced by total synthesis, aminooxypentane (AOP)-RANTES[2-68] and N -nonanoyl (NNY)-RANTES[2-68], were tested for their ability to prevent HIV-1 infection and to select for coreceptor switch variants in the human peripheral blood lymphocyte-SCID mouse model. Mice were infected with a CCR5-using HIV-1 isolate that requires only one or two amino acid substitutions to use CXCR4 as a coreceptor. Even though it achieved lower circulating concentrations than AOP-RANTES (75 to 96 pM as opposed to 460 pM under our experimental conditions), NNY-RANTES was more effective in preventing HIV-1 infection. However, in a subset of treated mice, these levels of NNY-RANTES rapidly selected viruses with mutations in the V3 loop of envelope that altered coreceptor usage. These results reinforce the case for using agents that block all significant HIV-1 coreceptors for effective therapy.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (148)