Antibiotic-Induced Alterations of the Murine Gut Microbiota and Subsequent Effects on Colonization Resistance against Clostridium difficile

Feces Mice Clostridioides difficile Animals Computer Simulation Supervised Machine Learning Microbiology QR1-502 Bacterial Load Research Article Anti-Bacterial Agents Gastrointestinal Microbiome 3. Good health
DOI: 10.1128/mbio.00974-15 Publication Date: 2015-07-15T00:49:44Z
ABSTRACT
ABSTRACTPerturbations to the gut microbiota can result in a loss of colonization resistance against gastrointestinal pathogens such asClostridium difficile. AlthoughC. difficileinfection is commonly associated with antibiotic use, the precise alterations to the microbiota associated with this loss in function are unknown. We used a variety of antibiotic perturbations to generate a diverse array of gut microbiota structures, which were then challenged withC. difficilespores. Across these treatments we observed thatC. difficileresistance was never attributable to a single organism, but rather it was the result of multiple microbiota members interacting in a context-dependent manner. Using relative abundance data, we built a machine learning regression model to predict the levels ofC. difficilethat were found 24 h after challenging the perturbed communities. This model was able to explain 77.2% of the variation in the observed number ofC. difficileper gram of feces. This model revealed important bacterial populations within the microbiota, which correlation analysis alone did not detect. Specifically, we observed that populations associated with thePorphyromonadaceae,Lachnospiraceae,Lactobacillus, andAlistipeswere protective and populations associated withEscherichiaandStreptococcuswere associated with high levels of colonization. In addition, a population affiliated with theAkkermansiaindicated a strong context dependency on other members of the microbiota. Together, these results indicate that individual bacterial populations do not drive colonization resistance toC. difficile. Rather, multiple diverse assemblages act in concert to mediate colonization resistance.IMPORTANCEThe gastrointestinal tract harbors a complex community of bacteria, known as the microbiota, which plays an integral role preventing its colonization by gut pathogens. This resistance has been shown to be crucial for protection againstClostridium difficileinfections (CDI), which are the leading source of hospital-acquired infections in the United States. Antibiotics are a major risk factor for acquiring CDI due to their effect on the normal structure of the indigenous gut microbiota. We found that diverse antibiotic perturbations gave rise to altered communities that varied in their susceptibility toC. difficilecolonization. We found that multiple coexisting populations, not one specific population of bacteria, conferred resistance. By understanding the relationships betweenC. difficileand members of the microbiota, it will be possible to better manage this important infection.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (35)
CITATIONS (253)