Efficient GPU Cloth Simulation with Non-distance Barriers and Subspace Reuse

FOS: Computer and information sciences Computer Science - Graphics 0202 electrical engineering, electronic engineering, information engineering 02 engineering and technology Graphics (cs.GR)
DOI: 10.1145/3687760 Publication Date: 2024-11-19T15:46:04Z
ABSTRACT
This paper pushes the performance of cloth simulation, making the simulation interactive even for high-resolution garment models while keeping every triangle untangled. The penetration-free guarantee is inspired by the interior point method, which converts the inequality constraints to barrier potentials. We propose a major overhaul of this modality within the projective dynamics framework by leveraging an adaptive weighting mechanism inspired by barrier formulation. This approach does not depend on the distance between mesh primitives, but on the virtual life span of a collision event and thus keeps all the vertices within feasible region. Such a non-distance barrier model allows a new way to integrate collision resolution into the simulation pipeline. Another contributor to the performance boost comes from the subspace reuse strategy. This is based on the observation that low-frequency strain propagation is near orthogonal to the deformation induced by collisions or self-collisions, often of high frequency. Subspace reuse then takes care of low-frequency residuals, while high-frequency residuals can also be effectively smoothed by GPU-based iterative solvers. We show that our method outperforms existing fast cloth simulators by at least one order while producing high-quality animations of high-resolution models.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (79)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....