Volume-responsive sodium movements in dog red blood cells
0301 basic medicine
Erythrocytes
Sodium
Biological Transport, Active
Hydrogen-Ion Concentration
Lithium
3. Good health
Kinetics
03 medical and health sciences
Dogs
Body Water
Animals
Calcium
DOI:
10.1152/ajpcell.1983.244.5.c324
Publication Date:
2017-12-24T11:40:16Z
AUTHORS (1)
ABSTRACT
As dog red blood cells are shrunken in vitro, their sodium permeability increases progressively. Some new features of this volume-responsive transport process are described. Retardation of sodium movements in shrunken cells occurs when chloride is replaced by the more conductive anions: nitrate or thiocyanate. Micromolar concentrations of amiloride or quinidine inhibit the increment of sodium flux associated with a reduction in cell volume. In the presence of a large outwardly directed sodium gradient, dog red blood cells can progressively alkalinize the medium in which they are suspended. This pH change is stimulated by cell shrinkage, reversed by cell swelling, retarded when chloride is replaced by nitrate or thiocyanate, and inhibited by micromolar concentrations of amiloride or quinidine. The similarities between the shrinkage-associated sodium flux and the alkalinization phenomenon suggest that the mechanism responsible for increased sodium permeability in shrunken cells can be made to operate as a sodium-hydrogen exchanger.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (76)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....