Na+-K+-ATPase and Na+/Ca2+exchange activities in gills of hyperregulatingCarcinus maenas
Gills
Brachyura
Acclimatization
Blotting, Western
Water-Electrolyte Balance
Sodium-Calcium Exchanger
6. Clean water
03 medical and health sciences
0302 clinical medicine
Cyclic AMP
Animals
Seawater
Sodium-Potassium-Exchanging ATPase
DOI:
10.1152/ajpregu.1999.276.2.r490
Publication Date:
2017-12-25T07:21:20Z
AUTHORS (2)
ABSTRACT
Na+-K+-ATPase and Na+/Ca2+exchange activities were studied in gills of Carcinus maenas in seawater (SW) and after transfer to dilute seawater (DSW). Carcinushyperregulates its hemolymph osmolarity through active uptake of Na+, Cl−, and Ca2+. In DSW total Na+-K+-ATPase activity in posterior gills quadrupled; Na+/Ca2+exchange specific activity was unaffected, and total activity increased 1.67-fold. Short-circuit current ( Isc) in voltage-clamped posterior gill hemilamellae was −181 μA/cm2in SW and −290 μA/cm2in DSW and up to 90% ouabain sensitive; conductivity was similar in SW or DSW (42 and 46 mS/cm2, respectively) and representative of a leaky epithelium. The new steady state of hemolymph osmolarity 24 h after DSW transfer was preceded, already 3 h after transfer, by increased Na+-K+-ATPase but not Na+/Ca2+exchange activity. Western blot analysis indicated that the amount of Na+-K+-ATPase protein had increased 2.1-fold in crabs acclimated 3 wk to DSW; however, 4 h after DSW transfer no difference in the amount of Na+-K+-ATPase protein was observed. After DSW transfer branchial cAMP content decreased. A negative correlation between branchial Na+-K+-ATPase activity and cAMP content points to rapid regulation of Na+-K+-ATPase through cAMP-dependent protein kinase A activity. Ca2+transport may depend on the high-capacity Na+/Ca2+exchanger coupled to the versatile sodium pump.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (49)
CITATIONS (26)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....