Gamma Kernel Estimators for Density and Hazard Rate of Right‐Censored Data

0101 mathematics Probabilities. Mathematical statistics 01 natural sciences QA273-280
DOI: 10.1155/2011/937574 Publication Date: 2011-06-17T19:16:15Z
ABSTRACT
The nonparametric estimation for the density and hazard rate functions for right‐censored data using the kernel smoothing techniques is considered. The “classical” fixed symmetric kernel type estimator of these functions performs well in the interior region, but it suffers from the problem of bias in the boundary region. Here, we propose new estimators based on the gamma kernels for the density and the hazard rate functions. The estimators are free of bias and achieve the optimal rate of convergence in terms of integrated mean squared error. The mean integrated squared error, the asymptotic normality, and the law of iterated logarithm are studied. A comparison of gamma estimators with the local linear estimator for the density function and with hazard rate estimator proposed by Müller and Wang (1994), which are free from boundary bias, is investigated by simulations.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (15)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....