Lipid Phosphate Phosphatase 3 Negatively Regulates Smooth Muscle Cell Phenotypic Modulation to Limit Intimal Hyperplasia

Mice, Knockout 0301 basic medicine Hyperplasia Genotype Carotid Artery, Common Hydrolysis Myocytes, Smooth Muscle Muscle, Smooth, Vascular Enzyme Activation Mice, Inbred C57BL Disease Models, Animal Mice 03 medical and health sciences HEK293 Cells Gene Expression Regulation Cell Movement Animals Humans Lysophospholipids Carotid Artery Injuries Extracellular Signal-Regulated MAP Kinases Cell Proliferation
DOI: 10.1161/atvbaha.112.300527 Publication Date: 2012-10-27T01:12:11Z
ABSTRACT
Objective— The lipid phosphate phosphatase 3 (LPP3) degrades bioactive lysophospholipids, including lysophosphatidic acid and sphingosine-1-phosphate, and thereby terminates their signaling effects. Although emerging evidence links lysophosphatidic acid to atherosclerosis and vascular injury responses, little is known about the role of vascular LPP3. The goal of this study was to determine the role of LPP3 in the development of vascular neointima formation and smooth muscle cells (SMC) responses. Methods and Results— We report that LPP3 is expressed in vascular SMC after experimental arterial injury. Using gain- and loss-of-function approaches, we establish that a major function of LPP3 in isolated SMC cells is to attenuate proliferation (extracellular signal-regulated kinases) activity, Rho activation, and migration in response to serum and lysophosphatidic acid. These effects are at least partially a consequence of LPP3-catalyzed lysophosphatidic acid hydrolysis. Mice with selective inactivation of LPP3 in SMC display an exaggerated neointimal response to injury. Conclusion— Our observations suggest that LPP3 serves as an intrinsic negative regulator of SMC phenotypic modulation and inflammation after vascular injury, in part, by regulating lysophospholipid signaling. These findings may provide a mechanistic link to explain the association between a PPAP2B polymorphism and coronary artery disease risk.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (45)