PLCB3 Loss of Function Reduces Pseudomonas aeruginosa–Dependent IL-8 Release in Cystic Fibrosis
0301 basic medicine
0303 health sciences
Airway inflammation; Calcium signaling; Cystic fibrosis; IL-8; Phospholipase C-β3
IL-8
Cystic Fibrosis
Interleukin-8
Phospholipase C beta
Bronchi
airway inflammation
calcium signaling
Cell Line
3. Good health
cystic fibrosis
Mucus
Structure-Activity Relationship
03 medical and health sciences
phospholipase C-β3
Mutation
Pseudomonas aeruginosa
[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology
Serine
Humans
Computer Simulation
Calcium Signaling
DOI:
10.1165/rcmb.2017-0267oc
Publication Date:
2018-04-18T20:49:54Z
AUTHORS (17)
ABSTRACT
The lungs of patients with cystic fibrosis (CF) are characterized by an exaggerated inflammation driven by secretion of IL-8 from bronchial epithelial cells and worsened by Pseudomonas aeruginosa infection. To identify novel antiinflammatory molecular targets, we previously performed a genetic study of 135 genes of the immune response, which identified the c.2534C>T (p.S845L) variant of phospholipase C-β3 (PLCB3) as being significantly associated with mild progression of pulmonary disease. Silencing PLCB3 revealed that it potentiates the Toll-like receptor's inflammatory signaling cascade originating from CF bronchial epithelial cells. In the present study, we investigated the role of the PLCB3-S845L variant together with two synthetic mutants paradigmatic of impaired catalytic activity or lacking functional activation in CF bronchial epithelial cells. In experiments in which cells were exposed to P. aeruginosa, the supernatant of mucopurulent material from the airways of patients with CF or different agonists revealed that PLCB3-S845L has defects of 1) agonist-induced Ca2+ release from endoplasmic reticulum and rise of Ca2+ concentration, 2) activation of conventional protein kinase C isoform β, and 3) induction of IL-8 release. These results, besides identifying S845L as a loss-of-function variant, strengthen the importance of targeting PLCB3 to mitigate the CF inflammatory response in bronchial epithelial cells without blunting the immune response.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (15)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....