Molecular characterization of the calcium release channel deficiency syndrome

Male Adolescent Homozygote Induced Pluripotent Stem Cells Cell Differentiation Ryanodine Receptor Calcium Release Channel Pedigree 3. Good health 03 medical and health sciences Phenotype 0302 clinical medicine Case-Control Studies Child, Preschool Gene Duplication Tachycardia, Ventricular Humans Calcium Female Myocytes, Cardiac Child Research Article
DOI: 10.1172/jci.insight.135952 Publication Date: 2020-07-14T16:01:21Z
ABSTRACT
We identified a potentially novel homozygous duplication involving the promoter region and exons 1-4 of the gene encoding type 2 cardiac ryanodine receptor (RYR2) that is responsible for highly penetrant, exertion-related sudden deaths/cardiac arrests in the Amish community without an overt phenotype to suggest RYR2-mediated catecholaminergic polymorphic ventricular tachycardia (CPVT). Homozygous RYR2 duplication (RYR2-DUP) induced pluripotent stem cell cardiomyocytes (iPSC-CMs) were generated from 2 unrelated patients. There was no difference in baseline Ca2+ handling measurements between WT-iPSC-CM and RYR2-DUP-iPSC-CM lines. However, compared with WT-iPSC-CMs, both patient lines demonstrated a dramatic reduction in caffeine-stimulated and isoproterenol-stimulated (ISO-stimulated) Ca2+ transient amplitude, suggesting RyR2 loss of function. There was a greater than 50% reduction in RYR2 transcript/RyR2 protein expression in both patient iPSC-CMs compared with WT. Delayed afterdepolarization was observed in the RYR2-DUP-iPSC-CMs but not in the WT-iPSC-CMs. Compared with WT-iPSC-CMs, there was significantly elevated arrhythmic activity in the RYR2-DUP-iPSC-CMs in response to ISO. Nadolol, propranolol, and flecainide reduced erratic activity by 8.5-fold, 6.8-fold, and 2.4-fold, respectively, from ISO challenge. Unlike the gain-of-function mechanism observed in RYR2-mediated CPVT, the homozygous multiexon duplication precipitated a dramatic reduction in RYR2 transcription and RyR2 protein translation, a loss of function in calcium handling, and a calcium-induced calcium release apparatus that is insensitive to catecholamines and caffeine.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (27)
CITATIONS (18)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....