Mountain Waves in Two-Layer Sheared Flows: Critical-Level Effects, Wave Reflection, and Drag Enhancement

01 natural sciences 0105 earth and related environmental sciences
DOI: 10.1175/2007jas2577.1 Publication Date: 2008-06-09T14:31:33Z
ABSTRACT
Abstract Internal gravity waves generated in two-layer stratified shear flows over mountains are investigated here using linear theory and numerical simulations. The impact on the gravity wave drag of wind profiles with constant unidirectional or directional shear up to a certain height and zero shear above, with and without critical levels, is evaluated. This kind of wind profile, which is more realistic than the constant shear extending indefinitely assumed in many analytical studies, leads to important modifications in the drag behavior due to wave reflection at the shear discontinuity and wave filtering by critical levels. In inviscid, nonrotating, and hydrostatic conditions, linear theory predicts that the drag behaves asymmetrically for backward and forward shear flows. These differences primarily depend on the fraction of wavenumbers that pass through their critical level before they are reflected by the shear discontinuity. If this fraction is large, the drag variation is not too different from that predicted for an unbounded shear layer, while if it is small the differences are marked, with the drag being enhanced by a considerable factor at low Richardson numbers (Ri). The drag may be further enhanced by nonlinear processes, but its qualitative variation for relatively low Ri is essentially unchanged. However, nonlinear processes seem to interact constructively with shear, so that the drag for a noninfinite but relatively high Ri is considerably larger than the drag without any shear at all.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (21)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....