A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars
01 natural sciences
0105 earth and related environmental sciences
DOI:
10.1175/2009jtecha1208.1
Publication Date:
2009-05-27T21:15:19Z
AUTHORS (2)
ABSTRACT
Abstract
Although much work has been done at S band to automatically identify hydrometeors by using polarimetric radar, several challenges are presented when adapting such algorithms to X band. At X band, attenuation and non-Rayleigh scattering can pose significant problems. This study seeks to develop a hydrometeor identification (HID) algorithm for X band based on theoretical simulations using the T-matrix scattering model of seven different hydrometeor types: rain, drizzle, aggregates, pristine ice crystals, low-density graupel, high-density graupel, and vertical ice. Hail and mixed-phase hydrometeors are excluded for the purposes of this study. Non-Rayleigh scattering effects are explored by comparison with S-band simulations. Variable ranges based on the theoretical simulations are used to create one-dimensional fuzzy-logic membership beta functions that form the basis of the new X-band HID. The theory-based X-band HID is applied to a case from the Collaborative Adaptive Sensing of the Atmosphere (CASA) Integrated Project 1 (IP1) network of X-band radars, and comparisons are made with similar S-band hydrometeor identification algorithms applied to data from the S-band polarimetric Next Generation Weather Radar (NEXRAD) prototype radar, KOUN. The X-band HID shows promise for illustrating bulk hydrometeor types and qualitatively agrees with analysis from KOUN. A simple reflectivity- and temperature-only HID is also applied to both KOUN and CASA IP1 data to reveal benefits of the polarimetric-based HID algorithms, especially in the classification of ice hydrometeors and oriented ice crystals.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (64)
CITATIONS (147)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....