The Seneca Valley virus 3C protease cleaves DCP1A to attenuate its antiviral effects
DCP1A
Veterinary medicine
Seneca Valley virus (SVV)
SF600-1100
cleavage
3C protease
3D
DOI:
10.1186/s13567-025-01477-0
Publication Date:
2025-02-28T08:42:27Z
AUTHORS (8)
ABSTRACT
Abstract
Seneca Valley virus (SVV), a new member of Picornaviridae, causes idiopathic vesicular symptoms in pregnant sows and acute death in neonatal piglets, considerably damaging the swine industry. The viral protease 3C (3Cpro) cleaves host immune-related molecules to create a favorable environment for viral replication. In this study, we found that mRNA decapping enzyme 1A (DCP1A) is a novel antiviral effector against SVV infection that targets 3D viral RNA-dependent RNA polymerase for OPTN-mediated autophagic degradation. To counteract this effect, SVV 3Cpro targets DCP1A for cleavage at glutamine 343 (Q343), resulting in the cleaved products DCP1A (1–343) and DCP1A (344–580), which lose the ability to restrict SVV replication. In contrast, the 3C cleavage-resistant DCP1A-Q343A mutant exhibited stronger antiviral effects than the wild-type DCP1A. Additionally, the degradation of the viral 3D protein targeted by DCP1A was abolished after its cleavage by SVV 3Cpro. In conclusion, our study demonstrated that SVV 3Cpro is a pivotal ISG antagonist that cleaves DCP1A. These results offer novel insight into how viruses evade host immunity.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (54)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....