An effective-medium model for P-wave velocities of saturated, unconsolidated saline permafrost
Geochemistry & Geophysics
Geophysics
13. Climate action
Earth Sciences
01 natural sciences
Physical Geography and Environmental Geoscience
0105 earth and related environmental sciences
DOI:
10.1190/geo2016-0474.1
Publication Date:
2017-03-02T10:49:19Z
AUTHORS (4)
ABSTRACT
To better understand the relationship between P-wave velocities and ice content in saturated, unconsolidated saline permafrost, we constructed an effective-medium model based upon ultrasonic P-wave data that were obtained from earlier laboratory studies. The model uses a two-end-member mixing approach in which an ice-filled, fully frozen end member and a water-filled, fully unfrozen end member are mixed together to form the effective medium of partially frozen sediments. This mixing approach has two key advantages: (1) It does not require parameter tuning of the mixing ratios, and (2) it inherently assumes mixed pore-scale distributions of ice that consist of frame-strengthening (i.e., cementing and/or load-bearing) ice and pore-filling ice. The model-predicted P-wave velocities agree well with our laboratory data, demonstrating the effectiveness of the model for quantitatively inferring ice content from P-wave velocities. The modeling workflow is simple and is largely free of calibration parameters — attributes that ease its application in interpreting field data sets.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (65)
CITATIONS (31)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....