Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity
Adipose triglyceride lipase
Hormone-sensitive lipase
Perilipin
DOI:
10.1194/jlr.m055798
Publication Date:
2014-12-23T05:12:45Z
AUTHORS (8)
ABSTRACT
Adipocyte fatty acid binding protein 4, aP2, contributes to the pathogenesis of several common diseases including type 2 diabetes, atherosclerosis, liver disease, asthma, and cancer. Although biological functions aP2 have classically been attributed its intracellular action, recent studies demonstrated that acts as an adipokine regulate systemic metabolism. However, mechanism regulation secretion remain unknown. Here, we demonstrate a specific role for lipase activity in from adipocytes vitro ex vivo. Our results show chemical inhibition activity, genetic deficiency adipose triglyceride and, lesser extent, hormone-sensitive blocked adipocytes. Increased lipolysis lipid availability also contributed release determined perilipin1-deficient tissue explants vivo upon treatment with lipids vitro. In addition, identify nonclassical route exosome-like vesicles is recruited this pathway stimulation lipolysis. Given effect circulating on glucose metabolism, these data support targeting or lipolysis-dependent secretory may present novel mechanistic translational opportunities metabolic disease. Adipose endocrine organ whose products orchestrate various tissues, brain, pancreas, liver, maintain homeostasis. Adipocytes respond immune cues by mobilizing their fat stores through secreting variety hormones cytokines (1Kershaw E.E. Flier J.S. organ.J. Clin. Endocrinol. Metab. 2004; 89: 2548-2556Crossref PubMed Scopus (3679) Google Scholar, 2Scherer P.E. tissue: storage compartment organ.Diabetes. 2006; 55: 1537-1545Crossref (828) Scholar). Such signals converge target example production, β cells modulate insulin production. A critical molecule integration adipocyte biology [fatty (FABP) 4], upregulated during differentiation macrophage activation (3Furuhashi M. Hotamisligil G.S. Fatty acid-binding proteins: potential drug targets.Nat. Rev. Drug Discov. 2008; 7: 489-503Crossref (1125) 4Hertzel A.V. Bernlohr D.A. The mammalian multigene family: molecular insights into function.Trends 2000; 11: 175-180Abstract Full Text PDF (340) Since identification, has studied primarily metabolism inflammation Genetic deletion models FABP plays chronic diseases, liver. Mice deficient related FABP5/mal1 together improved function, increased sensitivity, reduced cardiovascular disease context high-fat diet mouse obesity atherosclerosis (5Hotamisligil Johnson R.S. Distel R.J. Ellis R. Papaioannou V.E. Spiegelman B.M. Uncoupling resistance targeted mutation protein.Science. 1996; 274: 1377-1379Crossref (651) 6Uysal K.T. Scheja L. Wiesbrock S.M. Bonner-Weir S. Improved genetically obese mice lacking aP2.Endocrinology. 141: 3388-3396Crossref (0) 7Boord J.B. Maeda K. Makowski Babaev V.R. Fazio Linton M.F. Combined adipocyte-macrophage improves survival apolipoprotein E-deficient mice.Circulation. 110: 1492-1498Crossref (165) 8Cao H. Gorgun C.Z. Kim H.J. Park S.Y. Shulman G.I. J.K. Regulation responses adipocyte/macrophage proteins leptin-deficient mice.Diabetes. 1915-1922Crossref (73) 9Furuhashi Tuncman G. Atsumi Vaillancourt E. Kono et al.Treatment diabetes inhibiting fatty-acid-binding aP2.Nature. 2007; 447: 959-965Crossref (557) 10Cao Gerhold Mayers J.R. Wiest M.M. Watkins Identification lipokine, hormone linking metabolism.Cell. 134: 933-944Abstract (818) 11Erbay Charles K.N. Snitow M.E. al.Reducing endoplasmic reticulum stress chaperone alleviates atherosclerosis.Nat. Med. 2009; 15: 1383-1391Crossref (393) 12Makowski Boord Uysal Morgan M.A. Parker R.A. Suttles J. al.Lack protects E against 2001; 699-705Crossref (569) link between supported association multiple populations demonstrating benefits individuals carrying rare haploinsufficiency locus, validating relevance human (13Tuncman Erbay Hom X. De Vivo I. Campos Rimm E.B. variant at locus reduces risk hypertriglyceridemia, disease.Proc. Natl. Acad. Sci. USA. 103: 6970-6975Crossref (233) 14Saksi Ijäs P. Mäyränpää M.I. Nuotio Isoviita P.M. Tuimala Lehtonen-Smeds Kaste Jula A. Sinisalo al.The low-expression 4 favors manifestations atherosclerotic plaque stability.Circ Cardiovasc Genet. 2014; 588-598Crossref (22) Traditionally, improvements observed were changes turn secondary mediators impact distant tissues whole body homeostasis (10Cao recently secreted regulated manner directly increases hepatic output (15Cao Sekiya Erikci Ertunc Burak White Inouye Rickey L.M. Ercal B.C. Furuhashi al.Adipocyte regulating production.Cell 2013; 17: 768-778Abstract (177) These levels are significantly dietary obesity, neutralizing polyclonal antibody parameters growing humans shows positively correlated pathologies, (16Miyoshi T. Onoue Hirohata Usui Hina Kawamura Doi Kusano K.F. Kusachi al.Serum independently associated coronary burden measured intravascular ultrasound.Atherosclerosis. 2010; 211: 164-169Abstract (78) 17Xu Wang Y. Xu J.Y. Stejskal D. Tam Zhang Wat N.M. Wong W.K. Lam K.S. plasma biomarker closely syndrome.Clin. Chem. 52: 405-413Crossref (475) 18Yoo M.S. Choi H.Y. Yang S.J. Seo J.A. S.G. N.H. Baik S.H. D.S. vascular inflammation: analysis (18)F-fluorodeoxyglucose positron emission tomography.J. 2011; 96: E488-E492Crossref (39) 19Furuhashi Ishimura Ota Hayashi Nishitani Tanaka Yoshida Shimamoto Miura Serum predictor events end-stage renal disease.PLoS ONE. 6: e27356Crossref (74) 20Hsu B.G. Chen Y.C. Lee R.P. C.C. C.J. J.H. Fasting serum level correlates syndrome patients artery disease.Circ. 74: 327-331Crossref (53) 21Bao Lu Z. Zhou Li Gao Wei Jia W. severity Chinese women.PLoS e19115Crossref (48) 22Liu Bao Zhu al.Circulating heart failure.Clin. (Lond.). 124: 115-122Crossref (33) 23Ishimura Watanabe Hoshina Fuseya Mita Okazaki Koyama Akasaka family phenotype general population.PLoS 8: e81318Crossref (104) 24von Eynatten Breitling L.P. Roos Baumann Rothenbacher Brenner Circulating morbidity mortality disease: 10-year prospective study.Arterioscler. Thromb. Vasc. Biol. 2012; 32: 2327-2335Crossref (93) 25Terra Quintero Auguet Porras Hernandez Sabench F. Aguilar C. Luna A.M. Del Castillo Richart inflammatory markers morbidly women.Eur. 164: 539-547Crossref (91) 26Kim Cho Y.K. W.Y. D.I. Sohn C.I. Jeon B.I. S.E. adipocyte-specific nonalcoholic apparently healthy subjects.J. Nutr. Biochem. 22: 289-292Crossref (28) revealed other roles extracellular (27Lamounier-Zepter V. Look Alvarez Christ Ravens U. Schunck W.H. Ehrhart- Bornstein M S.R Morano I suppresses cardiomyocyte contraction: new Res. 105: 326-334Crossref (157) 28Wu L.E. Samocha-Bonet Whitworth P.T. Fazakerley D.J. Turner N. Biden T.J. James D.E. Cantley regulates obesity.Mol 3: 465-473Crossref (77) observations strengthen emerging view suggest therapeutic value wide array complex diseases. Hence, understanding mechanisms underlie importance. As case glucoregulatory such glucagon, feeding fasting, but it occurs simultaneously It well established long-term resistance, (29Guilherme Virbasius J.V. Puri Czech M.P. dysfunctions diabetes.Nat. Mol. Cell 9: 367-377Crossref (1601) 30Arner Langin Lipolysis turnover, cancer cachexia, obesity-induced resistance.Trends 25: 255-262Abstract (162) mostly explored drive response, rather than hormonal be coupled breakdown integrate status depots fasting nutrient excess. We postulate key candidate supports adaptation energy fluctuations. neither direct lipolytic nor mode currently known. Sequence using SignalP 4.1 Server (31Petersen T.N. Brunak von Heijne Nielsen 4.0: discriminating signal peptides transmembrane regions.Nat. Methods. 785-786Crossref (7096) Scholar) reveals lacks peptide required reticulum/Golgi-mediated classical secretion, predicted SecretomeP 2.0 (32Bendtsen J.D. Jensen L.J. Blom Von Feature-based prediction non-classical leaderless secretion.Protein Eng. Des. Sel. 349-356Crossref (938) nonclassically protein. While consistent earlier resistant inhibitors brefeldin monensin Scholar), identity involved study, utilized approaches highly dependent lipases driven elevated lipids. Furthermore, found leads recruitment multivesicular bodies (MVBs), compartment, externalization vesicles. findings concept responds controlled indicate carry out, least part, functions. Plin1−/− obtained Jackson Laboratories (Bar Harbor, ME; stock number: 021887). Atglflox/flox (C57/BL6 background) kind gift Dr. Erin Kershaw (University Pittsburgh, PA), Hslflox/flox Maglflox/flox (mixed Rudolf Zechner Graz, Austria). Adiponectin-Cre (Adipoq-Cre) Evan Rosen (Beth Israel Deaconess Medical Center, Harvard School) backcrossed onto C57Bl/6J background. order obtain tissue-specific lipase-deficient mice, homozygous floxed crossed Adipoq-Cre mice. Cre-positive progeny then flox/flox flox/flox;Cre use experiments. prepared 10- 16-week-old Intralipid infusion experiments performed 24-week-old male All maintained 12 h light dark cycle. regular chow (RD, PicoLab 5058 Lab Diet, 9% fat). Area Standing Committee Animals approved all studies. Conditioned media (CM), cell lysates (CLs), (TLs), run 15% SDS-PAGE gels. For immunoblotting, rabbit anti-aP2 was produced in-house recombinant, full-length aP2. Other antibodies following commercial sources: β-tubulin (Santa Cruz, sc-9104), (for confocal electron microscopy, Signaling, 3544), anti-adipose (ATGL) (Cell Signaling Technology, 2138), anti-hormone-sensitive (HSL) 4107S), anti-perilipin sc-47322), anti-milk globule-EGF Factor 8 (MFG-E8; Santa sc-33546), anti-protein disulfide isomerase (PDI; Stressgen, SPA-901), anti-cluster 63 (CD63; sc-15363), anti-Programmed death 6 interacting (ALIX; BioLegend, 634501), anti-tumor susceptibility 101 (TSG101; Abcam, ab83). FLAG-tagged immunoprecipitated conditioned anti-FLAG M2 affinity agarose gel (Sigma) overnight 4°C. Proteins eluted 2× SDS loading buffer analyzed Western blots. used 1:1,000 dilution, detected BM chemiluminescence blotting substrate (Roche) SuperSignal West Femto (Pierce). FLAG blots quantified ImageJ software (The National Institutes Health, Bethesda, MD). previously described (33Nakamura Cao Sonenberg Double-stranded RNA-dependent kinase links pathogen sensing homeostasis.Cell. 140: 338-348Abstract (385) Briefly, WT fasted before infused 5 ml/kg/h (Baxter Healthcare Corporation) h. Blood collected after infusion. Plasma separated microcentrifugation blood 13,000 rpm 30 min. ELISA system (Biovendor Inc.). 3T3-L1 derived WT, aP2-deficient, (aP2−/−; mal1−/−)-deficient preadipocytes DMEM 10% bovine calf serum. differentiation, seeded, medium changed days (day −2). On day 0, induced Cosmic Calf (CCS) 500 µM 3-isobutyl-1-methylxanthine (IBMX), µg/ml insulin, 10 dexamethasone, rosiglitazone. switched CCS thereafter, supplemented only insulin. Lipolytic without done 8–12 induction. induction treated 1 mM IBMX 20 forskolin (FSK) h, refreshed another hour. Medium microcentrifuged 5,000 Supernatants further analysis. involving inhibitors, differentiated pretreated H89 (50 µM), Atglistatin (kind Zechner, University Austria) (10 76-0079 Peter Kurtzhals Christian Fledelius, Novo Nordisk, Denmark) (2.5 CAY10499 (0.1 μM), DMSO Then cotreated explained above. experiments, stocks free acids acid-free, low-endotoxin BSA diluted CCS. incubated vehicle (500 µM) 24 processed extracellular vesicle (EV) isolation stimulation, indicated stimulants 3 below isolate adipose-specific models. Plin1+/− intercrossed littermates. Perigonadal removed preparation explants. samples washed PBS containing consecutively minced roughly mm-size pieces scissors. Explants same medium. lipase-deficiency models, IBMX, FSK, dibutyryl-cAMP (N6,2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate sodium salt), isoproterenol, CL 316,243, culture evaluated protocol perilipin1-deficiency model, 16 assess extent under basal conditions. Glycerol glycerol determination (Sigma-Aldrich), NEFA HR Series NEFA-HR (2Scherer (Wako Diagnostics) normalized total lysates. cloned pcDNA3 plasmid (Invitrogen). mutant (LBM) version GeneTailorTM Site-directed mutagenesis endogenous (aP2−/−) electroporated Line L Nucleofector (Lonza) AMAXA electroporator. next day, 13 differentiation. green fluorescent (GFP)-aP2 cloning lentiviral vector pRRLCMVGFP. infected lentivirus microscopy 7 express FLAG-tagged-GFP-aP2. 8, kept F12 They water isoproterenol μM) Cells fixed 4% formaldehyde 15 min stained LipidTOX Red 4,6-diamidino-2-phenylindole (DAPI) visualizing droplets nuclei, respectively. (4% w/v 200 HEPES pH 7.4 buffer) room temperature. two times infiltrated solution 2.3 sucrose 48 Subsequently, 0.5% centrifuged pellet. This embedded gelatin cryosectioned (34Griffiths Simons Warren Tokuyasu Immunoelectron thin, frozen sections: application transport Semliki Forest virus spike glycoproteins.Methods Enzymol. 1983; 466-485Crossref (161) Sections picked up 1:1 2% methyl cellulose sucrose. labeled GFP followed gold nm) final visualization transmission microscopy. Isolated adsorbed nickel mesh grids had coated formvar film subjected glow-discharge increase hydrophilicity. suspensions 4°C 0.1 phosphate buffer, 7.3. sequential washes incubations immunolabeling temperature: four PBS; permeabilization blocking 0.075% saponin PBS, normal goat serum, 1% min; (1:100) (PBS-BSA) h; PBS-BSA 1.4 nm gold-conjugated Fab′ anti-rabbit IgG (Nanoprobes, 1:100) three refixation glutaraldehyde 7.3 After washing water, immunogold-labeled silver-enhanced HQ silver enhancement kit (Nanoprobes) again positive staining uranyl acetate. Samples stabilized carbon coating prior imaging JEM 1200EX microscope (JEOL USA) equipped AMT XR-60 digital camera (Advanced Microscopy Techniques Corp.). Differentiated induce above, time points indicated. Microsomes fractionated (35Cox B. Emili Tissue subcellular fractionation extraction mass-spectrometry-based proteomics.Nat. Protoc. 1: 1872-1878Crossref (259) homogenized Teflon pestle, nuclei cleared 800 g, mitochondria 6,000 g. supernatant ultracentrifuged 100,000 g pellet microsomes. resuspended lysis blot. EV-depleted conditioning ultracentrifugation 20% 18 28,500 (∼100,000 g) SW32 rotor (Beckman Coulter). Media filtered (0.2 µm) DMEM. vesicle-depleted conditioning. Processing point min, twice, 2,000 eliminate floating cells. 0.45 µm pore filters ultracentrifuged 9,000 clear debris. Supernatant 90 repell
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (63)
CITATIONS (125)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....