Further evidence for a novel receptor for amino-terminal parathyroid hormone-related protein on keratinocytes and squamous carcinoma cell lines.
Keratinocytes
0301 basic medicine
Base Sequence
Molecular Sequence Data
Parathyroid Hormone-Related Protein
Gene Expression
Proteins
Blotting, Northern
Transfection
Peptide Fragments
Radioligand Assay
03 medical and health sciences
Parathyroid Hormone
Carcinoma, Squamous Cell
Cyclic AMP
Tumor Cells, Cultured
Humans
Receptors, Parathyroid Hormone
RNA, Messenger
DNA Probes
Receptor, Parathyroid Hormone, Type 1
DOI:
10.1210/endo.136.7.7789327
Publication Date:
2014-01-08T16:07:17Z
AUTHORS (10)
ABSTRACT
PTH and PTH-related peptides (PTHrPs) interact with a common PTH/PTHrP receptor (type I), which is expressed in many tissues, including bone and kidney. Amino-terminal PTH and PTHrPs also recognize receptors in several nonclassical PTH target tissues, and in some of these, the signaling mechanisms differ qualitatively from those of the classical type I receptor. In normal keratinocytes and squamous carcinoma cell lines, PTH and PTHrP stimulate a rise in intracellular calcium, but not cAMP, suggesting the existence of an alternate, type II PTH/PTHrP receptor. SqCC/Y1 squamous carcinoma cells stably expressing the type I receptor displayed sensitive intracellular cAMP responses to PTHrP and PTH, indicating that these cells express functional GS proteins and that the type I receptor is capable of signaling through adenylyl cyclase in this cell line. Therefore, the endogenous type II receptor in SqCC/Y1 cells differs from the cloned type I receptor. We next examined whether messenger RNA (mRNA) from keratinocytes and squamous cell lines could hybridize to a human type I PTH/PTHrP receptor complementary DNA [1.9 kilobases (kb)]. No type I receptor mRNA (2.3 kb) was detected in polyadenylated RNA from any of the squamous cell lines. However, squamous cell lines did express several mRNA transcripts that hybridized with the type I receptor probe, yet were smaller (1 and 1.5 kb) or larger (3.5-5 kb) than the cloned receptor mRNA. The predominant mRNA in two squamous carcinoma cell lines and normal keratinocytes was a 1-kb transcript. Northern analysis with five different region-specific probes that span the entire coding region of the human type I receptor was used to map homologous regions within each of the transcripts. Several of the transcripts identified in squamous lines are also present in polyadenylated RNA from SaOS-2 human bone cells, but a unique 1-kb transcript hybridizing to probe 2 (nucleotides 490-870) was observed only in squamous cells. The smaller 1- and 1.5-kb transcripts did not hybridize to probes corresponding to the extreme 5'- and 3'-coding regions of the type I receptor complementary DNA. Ribonuclease protection analysis employing riboprobes that correspond to the five region-specific DNA probes revealed strong RNA signals of the expected size in SaOS-2 cells, but no hybridization with squamous cell RNA. Several smaller, but minor, bands that were unique to squamous cells were observed with riboprobe 2 only, suggesting partial homology of this region with the type I receptor.(ABSTRACT TRUNCATED AT 400 WORDS)
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (79)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....