Cap ‘n’ collar B cooperates with a small Maf subunit to specify pharyngeal development and suppress Deformed homeotic function in the Drosophila head
Homeodomain Proteins
0303 health sciences
Binding Sites
Molecular Sequence Data
Models, Biological
Repressor Proteins
Protein Subunits
03 medical and health sciences
Drosophila melanogaster
Phenotype
Mutation
Animals
Drosophila Proteins
Insect Proteins
Pharynx
Protein Isoforms
Amino Acid Sequence
RNA, Messenger
Dimerization
Head
Body Patterning
RNA, Double-Stranded
DOI:
10.1242/dev.127.18.4023
Publication Date:
2021-04-23T19:55:38Z
AUTHORS (5)
ABSTRACT
ABSTRACT
The basic-leucine zipper protein Cap ‘n’ collar B (CncB) suppresses the segmental identity function of the Hox gene Deformed (Dfd) in the mandibular segment of Drosophila embryos. CncB is also required for proper development of intercalary, labral and mandibular structures. In this study, we provide evidence that the CncB-mediated suppression of Dfd requires the Drosophila homolog of the mammalian small Maf proteins, Maf-S, and that the suppression occurs even in the presence of high amounts of Dfd protein. Interestingly, the CncB/Maf-S suppressive effect can be partially reversed by overexpression of Homothorax (Hth), suggesting that Hth and Extradenticle proteins antagonize the effects of CncB/Maf-S on Dfd function in the mandibular segment. In embryos, multimers of simple CncB/Maf-S heterodimer sites are transcriptionally activated in response to CncB, and in tissue culture cells the amino-terminal domain of CncB acts as a strong transcriptional activation domain. There are no good matches to CncB/Maf binding consensus sites in the known elements that are activated in response to Dfd and repressed in a CncB-dependent fashion. This suggests that some of the suppressive effect of CncB/Maf-S proteins on Dfd protein function might be exerted indirectly, while some may be exerted by direct binding to as yet uncharacterized Dfd response elements. We also show that ectopic CncB is sufficient to transform ventral epidermis in the trunk into repetitive arrays of ventral pharynx. We compare the functions of CncB to those of its vertebrate and invertebrate homologs, p45 NF-E2, Nrf and Skn-1 proteins, and suggest that the pharynx selector function of CncB is highly conserved on some branches of the evolutionary tree.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (73)
CITATIONS (51)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....