Distinct hyperactive RAS/MAPK alleles converge on common GABAergic interneuron core programs
0301 basic medicine
0303 health sciences
03 medical and health sciences
MAP Kinase Signaling System
Interneurons
GABAergic Neurons
Somatostatin
Alleles
3. Good health
Research Article
Signal Transduction
DOI:
10.1242/dev.201371
Publication Date:
2023-05-11T13:24:38Z
AUTHORS (7)
ABSTRACT
ABSTRACT
RAS/MAPK gene dysfunction underlies various cancers and neurocognitive disorders. Although the roles of RAS/MAPK genes have been well studied in cancer, less is known about their function during neurodevelopment. There are many genes that work in concert to regulate RAS/MAPK signaling, suggesting that if common brain phenotypes could be discovered they could have a broad impact on the many other disorders caused by distinct RAS/MAPK genes. We assessed the cellular and molecular consequences of hyperactivating the RAS/MAPK pathway using two distinct genes in a cell type previously implicated in RAS/MAPK-mediated cognitive changes, cortical GABAergic interneurons. We uncovered some GABAergic core programs that are commonly altered in each of the mutants. Notably, hyperactive RAS/MAPK mutants bias developing cortical interneurons towards those that are somatostatin positive. The increase in somatostatin-positive interneurons could also be prevented by pharmacological inhibition of the core RAS/MAPK signaling pathway. Overall, these findings present new insights into how different RAS/MAPK mutations can converge on GABAergic interneurons, which may be important for other RAS/MAPK genes and related disorders.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (79)
CITATIONS (6)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....